Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: B
Cho các số 120; 132; 144; 155; 168; 179. Số chia hết cho 5 là: 120; 155.
A=(3+32+33+34+35)+.....................+(3151+3152+3153+3154+3155)
A=3.(1+3+9+27+81)+.....................+3151.(1+3+9+27+81)
A=3.121+.........................................+3151.121
A=121.3+..........................................+121.3151
=>A chia hết cho 121
A=(3+3^2+3^3+3^4+...+3^152+3^153+3^154+3^155)
A=3.(1+3+3^2+3^3+3^4)+...+3^152.(1+3+3^2+3^3+3^4)
A=3.121+...+3^152.121
A=121.(3+...+3^152)
Vì 121 chia hết cho 121
nên 121.(3+3^152)chia hết cho 121
hay Achia hết cho 121
TICK CHO MÌNH NHEN MÌNH CHƯA CÓ ĐIỂM HỎI ĐÁP.THANKS
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
Ta thấy:
\(121\vdots11\\110\vdots11\\99\vdots11\\88\vdots11\\...\\11\vdots11\\\Rightarrow 121-110+99-88+...+11\vdots11\)
Để \(B=121-110+99-88+...+11+a\)\(⋮̸11\)
thì \(a⋮̸11\)
Mặt khác: a là số lẻ nhỏ hơn 10
\(\Rightarrow a\in\left\{1;3;5;7;9\right\}\)
a | 59 | 121 | 179 | 197 | 217 |
p | 2;3;5;7 | 2;3;5;7;11 | 2;3;5;7;11;13 | 2;3;5;7;11;13 | 2;3;5;7;11;13 |
Đáp án: B
Cho các số 121; 132; 144; 165; 168; 179. Số chia hết cho 11 là 121; 132;165