Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Ánh sáng trắng không có bước sóng xác định, còn tất cả ánh sáng đơn sắc đều có bước sóng xác định.
\(\lambda_1\)(tím)\(=0,42\mu m\) , \(\lambda_2\) (lục) \(=0,56\mu m\) , \(\lambda_3\) (đỏ) \(=0,7\mu m\)
Vì giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 11 cực đại giao thoa của ánh sáng đỏ \(\Rightarrow k_{đỏ}=k_3=12\)
Từ BSCNN \(\Rightarrow k_1=k_{tím}=20\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 19 vân màu tím
\(\Rightarrow k_{lục}=k_2=15\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 14 vân màu lục.
\(\rightarrow A\)
Theo đề bài: Với bức xạ λ1 thì 10i1 = MN = 20mm → i1 = 2mm.
\(\frac{\iota_1}{\iota_2}=\frac{\text{λ}_1}{\text{λ}_2}=\frac{3}{5}\)\(\rightarrow\iota_2=\frac{10}{3}mm\rightarrow N_2=2.\left[\frac{MN}{2\iota_2}\right]+1=7\)
Giả sử ta dịch vân sáng trung tâm về M thì N là vị trí vân sáng thứ 10(có 10 vân tối)
\(\Rightarrow i_1=2mm\) , Khi thay \(\lambda_1\) bằng \(\lambda_2\) \(\Rightarrow\frac{i_1}{i_2}=\frac{\lambda_1}{\lambda_2}\Rightarrow i_2=\frac{i_1\lambda_2}{\lambda_1}=\frac{10}{3}mm\)
M là vị trí của 1 vân giao thoa,Ta có:
Vân trung tâm trên màn không đổi⇒ta tìm vị trí trùng nhau của 2 loai ánh sáng với 2 khoảng vân khác nhau hay tương ứng với khoảng cách từ vân trung tâm tới M.Ta chia 2 TH như sau:
TH1: M là vân tối
\(\frac{10}{3}.\left(n,5\right)=2k\) với n,k nguyên thì phương trình vô nghiệm
TH2:M là vân sáng
\(\frac{10}{3}.x=2y\)
ới x,y nguyên thì phương trình có nghiệm (3;5) và (6;10)
cả 2 nghiệm này đều kết luận trên MN có 7 vân sáng
----->chọn A
Số vân sáng trong khoảng giữa hai vân sáng nằm ở hai đầu là
\(N_s = 2[\frac{L}{2i}]+1=> \frac{L}{2i }= 10=> i = 2mm.\)
\(\lambda = \frac{ai}{D}= 0,6 \mu m.\)
Tóm tắt:
a = \(10^{-3}m\)
D = \(1,25m\)
\(\lambda_1=0,64\mu m\)
\(\lambda_2=0,48\mu m\)
\(\Delta x=?\)
Giải:
Khi vân sáng trùng nhau:
\(k_1\lambda_1=k_2\lambda_2\Rightarrow\)\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,48}{0,64}=\frac{3}{4}\)
Vậy: \(k_1=3;k_2=4\)\(\Rightarrow\Delta x=3i_1=3.\frac{\lambda_1.D}{a}=3.\)\(\frac{0,64.10^{-6}.1,25}{10^{-3}}=2,4.10^{-3}m=2,4mm\)
\(\rightarrow D\)
Vị trí vân sáng bậc 4 của ánh sáng đỏ: \(x_s^4 = 4. \frac{\lambda_d D}{a}\)
Tại vị trí này có vân sáng bậc \(k\) của ánh sáng có bước sóng \(\lambda\) tức là
\(x_s^4 = x_s^k<=> 4\frac{\lambda_d D}{a}= k\frac{\lambda D}{a} \)
<=> \(\lambda = \frac{4\lambda_d}{k}.\ \ (1)\)
Mà bước sóng \(\lambda\) này thỏa mãn \(0,38 \mu m \leq \lambda \leq 0,76 \mu m.\)
Thay (1) vào ta được \(0,38 \leq \frac{4\lambda_d}{k} \leq 0,76\)
<=> \( \frac{4\lambda_d }{0,76} \leq k \leq \frac{4\lambda_d}{0,38}\)
<=> \(\frac{4.0,76}{0,76} \leq k \leq \frac{4.0,76}{0,38}\)
<=> \(4 \leq k \leq 8.\)
=> \(k = 4,5,6,7,8.\)(trong đó k = 4 chính là vân sáng bậc 4 của ánh sáng đỏ)
Vậy ngoài vân sáng bậc 4 của ánh sáng đỏ ra thì còn 4 vân sáng của các ánh sáng khác tại vị trí đó.
Theo giả thiết ta có: \(MN=8i_1\)(*)
Mà: \(\frac{i_1}{i_2}=\frac{\lambda_1}{\lambda_2}=\frac{0,6}{0,48}=\frac{5}{4}\Rightarrow i_1=\frac{5}{4}i_2\)
Thay vào (*) ta có: \(MN=8.\frac{5}{4}i_2=10i_2\)
Do đó, số vân sáng có bước sóng 0,48\(\mu m\) quan sát được trên đoạn MN là 11 vân.
Chọn D.
Màu tím có khoảng vân nhỏ nhất, đỏ có khoảng vân lớn nhất.