Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(P=\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1=8.\left(\dfrac{1}{2}\right)^3+1=8.\dfrac{1}{8}+1=2\)
\(Q=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3=1^3+27.\left(\dfrac{1}{3}\right)^3=1+27.\dfrac{1}{27}=2\)
3) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow-24x^2+2x+2+24x^2-64x+10=-50\)
\(\Leftrightarrow-62x=-62\Leftrightarrow x=1\)
\(a,P=\left(x^2+8x\right)\left(2x-5\right)+x^2\left(-11-2x\right)-8+40x\)
\(=2x^3-5x^2+16x^2-40x-11x^2-2x^3-8+40x\)
\(=\left(2x^3-2x^3\right)+\left(-5x^2+16x^2-11x^2\right)+\left(-40x+40x\right)-8\)
\(=-8\)
\(\Rightarrow \) Giá trị của \(P\) không phụ thuộc vào biến \(x\).
\(b,Q=\left(5x-2\right)\left(x^2+2x\right)-x\left(5x^2+8x-4\right)+26\)
\(=5x^3+10x^2-2x^2-4x-5x^3-8x^2+4x+26\)
\(=\left(5x^3-5x^3\right)+\left(10x^2-2x^2-8x^2\right)+\left(-4x+4x\right)+26\)
\(=26\)
\(\Rightarrow\) Giá trị của \(Q\) không phụ thuộc vào biến \(x\).
\(c,B=3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+14\)
\(=3x^2+15x-\left(3x^2-3x+18x-18\right)+14\)
\(=3x^2+15x-3x^2+3x-18x+18+14\)
\(=\left(3x^2-3x^2\right)+\left(15x+3x-18x\right)+\left(18+14\right)\)
\(=32\)
\(\Rightarrow\) Giá trị của \(B\) không phụ thuộc vào biến \(x\).
#\(Toru\)
a: =2x^3-5x^2+16x^2-40x-11x^2-2x^3-8+40x
=-8
b: =5x^3+10x^2-2x^2-4x-5x^3-8x^2+4x+26
=26
c: =3x^2+15x-3x^2+3x-18x+18+14
=32
a/ (2x + 1)(4x – 3) – 6x(x + 5) – 2x(x – 7) + 18x
=8x^2-6x+4x-3-6x^2-30x-2x^2+14x+18x
=-3
vậy...
\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\)
Vậy.....
Ta có: \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=29\)
Ta có: \(\left(x-3\right)^2+\left(2x+1\right)^2-5\left(x-1\right)\left(x+1\right)+2\left(x-3\right)\)
\(=x^2-6x+9+4x^2+4x+1-5\left(x^2-1\right)+2x-6\)
\(=5x^2+4-5x^2+5=9\)
Vậy: Biểu thức \(\left(x-3\right)^2+\left(2x+1\right)^2-5\left(x-1\right)\left(x+1\right)+2\left(x-3\right)\) không phụ thuộc vào giá trị của biến
\(x^2-2x+\left(x+2\right)x-x\left(2x+1\right)+5=x^2-2x+x^2+2x-2x^2-x+5=-x+5\)
rút gọn sai hay đề sai