Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(P=\dfrac{2}{x^4-1}-\dfrac{1}{1-x^2}\)
\(=\dfrac{2}{\left(x^2-1\right)\left(x^2+1\right)}+\dfrac{1}{x^2-1}\)
\(=\dfrac{2+x^2-1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\dfrac{x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\dfrac{1}{x^2-1}\)
\(a,Đkxđ:x\ne\pm2\)
\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2-4}\)
b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)
Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)
\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)
Vậy ............
a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)
b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)
\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)
\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)
\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)
\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)
\(B=4\)
Vậy với mọi giá trị của x thì B luôn bằng 4
Vậy giá trị của B không phụ thuộc vào biến ( đpcm )
\(Giải:\)
\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)
\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)
\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)
Vì \(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)
a: DKXĐ: x<>1; x<>-1
b: \(A=\dfrac{x^2+2x+1+6-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+7-x^2+x-3x+3}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)
điều kiện của x để gtrị của biểu thức đc xác định
=>\(2x+10\ne0;x\ne0:2x\left(x+5\right)\ne0\)
\(2x+5\ne0;x\ne0\)
=>\(x\ne-5;x\ne0\)
vậy đkxđ là \(x\ne-5;x\ne0\)
rút gon giống với bạn nguyen thuy hoa đến \(\dfrac{x-1}{2}\)
b,để bt =1=>\(\dfrac{x-1}{2}=1\)
=>x-1=2
=>x=3 thỏa mãn đkxđ
c,d giống như trên
a)ĐKXĐ:
\(x+1\ne0\Leftrightarrow x\ne-1\)
\(x-1\ne0\Leftrightarrow x\ne1\)
b) \(A=\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}\right):\left(\dfrac{2x+2}{x-1}-\dfrac{4x}{x^2-1}\right)\)
\(=\left[\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\right]:\left[\dfrac{2\left(x+1\right)}{x-1}-\dfrac{4x}{x^2-1}\right]\)
\(=\left[\dfrac{x\left(x-1\right)+\left(x+1\right)}{x^2-1}\right]:\left[\dfrac{2\left(x+1\right)^2}{x^2-1}-\dfrac{4x}{x^2-1}\right]\)
\(=\left(\dfrac{x^2-x+x+1}{x^2-1}\right):\left(\dfrac{2\left(x^2+2x+1\right)-4x}{x^2-1}\right)\)
\(=\dfrac{x^2+1}{x^2-1}:\left(\dfrac{2x^2+4x+2-4x}{x^2-1}\right)\)
\(=\dfrac{x^2+1}{x^2-1}:\dfrac{2x^2+2}{x^2-1}\)
\(=\dfrac{x^2+1}{x^2-1}.\dfrac{x^2-1}{2x^2+2}\)
\(=\dfrac{x^2+1}{x^2-1}.\dfrac{x^2-1}{2\left(x^2+1\right)}\)
\(=\dfrac{1}{2}\)
Vậy với \(x\ne\pm1\) thì A không phụ thuộc vào biến x
Lời giải:
a. ĐKXĐ: \(\left\{\begin{matrix} x^4-1\neq 0\\ 1-x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (1-x^2)(1+x^2)\neq 0\\ 1-x^2\neq 0\end{matrix}\right.\)
\(\Leftrightarrow 1-x^2\neq 0\) (do \(1+x^2>0\) với mọi x)
\(\Leftrightarrow (1-x)(1+x)\neq 0\Leftrightarrow x\neq \pm 1\)
b.
\(P=\frac{2}{(x^2-1)(x^2+1)}+\frac{1}{x^2-1}=\frac{2}{(x^2-1)(x^2+1)}+\frac{x^2+1}{(x^2-1)(x^2+1)}=\frac{x^2+3}{(x^2-1)(x^2+1)}\)
$P$ vẫn nhận giá trị dương với $x=3,4,5,...$ nên bạn xem lại đề.
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)