Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left(\frac{x-2}{x^2-1}-\frac{x+2}{x^2+2x+1}\right).\left(\frac{1-x^2}{2}\right)^2\)
\(E=\left(\frac{x-2}{\left(x-1\right)\left(x+1\right)}-\frac{x-2}{\left(x+1\right)^2}\right).\left(\frac{\left(1-x\right)\left(1+x\right)}{2}\right)^2\)
\(E=\left(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)^2}-\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^2}\right).\frac{\left(1-x\right)^2\left(x+1\right)^2}{4}\)
\(E=\frac{\left(x-2\right)\left(x+1-x+1\right)}{\left(x-1\right)\left(x+1\right)^2}.\frac{\left(x-1\right)^2\left(x+1\right)^2}{4}\)
\(E=\frac{2\left(x-2\right)\left(x-1\right)}{4}\)
\(E=\frac{\left(x-2\right)\left(x-1\right)}{2}\)
a) \(E=\left(\frac{x-2}{x^2-1}-\frac{x+2}{x^2+2x+1}\right).\left(\frac{1-x^2}{2}\right)^2\)
\(=\left(\frac{x-2}{\left(x-1\right)\left(x+1\right)}-\frac{x+2}{\left(x+1\right)^2}\right).\frac{\left(x^2-1\right)^2}{4}\)
\(=\left(\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\right).\frac{\left(x^2-1\right)^2}{4}\)
\(=\left(\frac{x^2-3x+2-x^2-3x-2}{\left(x-1\right)^2\left(x+1\right)}\right).\frac{\left(x^2-1\right)^2}{4}\)
\(=\frac{-6x.\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+1\right).4}=\frac{-3x\left(x^2-1\right)^2}{\left(x^2-1\right)\left(x-1\right).4}=\frac{-3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right).4}\)\(=\frac{-3x\left(x+1\right)}{4}\)
b) Muốn \(\frac{E-4}{5}=x\) thì \(\frac{\frac{-3x\left(x+1\right)}{4}-4}{5}=x\)
\(\Rightarrow\frac{\frac{-3x^2\left(x+1\right)}{4}-\frac{16}{4}}{5}=x\)
\(\Rightarrow\frac{-3x^3-3x^2-16}{4}=5x\)
\(\Rightarrow-3x^3-3x^2-16=20x\)
\(\Rightarrow-3x^3-3x^2-16=20x\).....................................................................
b. Sử dụng các hằng đẳng thức
\(a^3+b^3+c^2-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)
và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
nên \(A=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{1}{2}.\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Do (a - b) + (b - c) + (c - a) = 0 nên áp dụng hđt \(X^2+Y^2+Z^2=-2\left(XY+YZ+ZX\right)\)khi X + Y + Z = 0, ta có:
\(A=-2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)
Bài 1 :
\(b,ax^2+3ax+9=a^2\)
\(\Leftrightarrow a^2x+3ax+9-a^2=0\)
\(\Leftrightarrow ax\left(a+3\right)+\left(a+3\right)\left(3-a\right)=0\)
\(\Leftrightarrow\left(a+3\right)\left(ax+3-a\right)=0\)
Vì \(a\ne3\Rightarrow\left(a+3\right)\ne0\Rightarrow ax+3-a=0\)
\(\Leftrightarrow ax=a-3\)
Vì \(a\ne0\Rightarrow x=\frac{a-3}{a}\)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
a, \(E=1+\left(\frac{2x^3+x^2-x}{x^3-1}-\frac{2x-1}{x-1}\right)\frac{x^2-x}{2x-1}\)
\(=1+\left[\frac{x\left(x+1\right)\left(2x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x-1}{x-1}\right]\frac{x\left(x-1\right)}{2x-1}\)
\(=1+\frac{x\left(x+1\right)\left(2x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x\left(x+1\right)}{2x-1}-\frac{2x-1}{x-1}.\frac{x\left(x-1\right)}{2x-1}\)
\(=1+x.\frac{x\left(x+1\right)}{x^2+x+1}-x\)
\(=1+x\left(\frac{x^2+x}{x^2+x+1}-1\right)\)
\(=1+x.\frac{x^2+x-x^2-x-1}{x^2+x+1}\)
\(=1+x.\frac{-1}{x^2+x+1}\)
\(=1-\frac{x}{x^2+x+1}\)
\(=\frac{x^2+1}{x^2+x+1}\)
b, \(E-\frac{2}{3}=\frac{x^2+1}{x^2+x+1}-\frac{2}{3}=\frac{x^2-2x+1}{3\left(x^2+x+1\right)}=\frac{\left(x-1\right)^2}{3\left(x^2+x+1\right)}\)
\(\Rightarrow E-\frac{2}{3}\ge0\forall x\Rightarrow E\ge\frac{2}{3}\left(đpcm\right)\)