![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 4.(1+4)+43.(1+4)+................+459(1+4)
=5.4+5.43+...+5.459
=5.(4+43+.+459) chia hết cho 5
4.(1+4+42)+44.(1+4+42)+...............+458(1+4+42)
=21.4+44.21+..+21.458
=21.(4+44+.+458) chia hết cho 21
b) 5.(1+5)+53(1+5)+.+59(1+5)
=6.(5+53+.............+59) chia hết cho 6
a) Đặt biểu thức trên là A, ta có:
A = 4 + 42 + 43 + 44 + ... + 460
=> A = (4 + 42) + (43 + 44) + ... + (459 + 460)
=> A = 4(1 + 4) + 43(1 + 4) + ... + 459(1 + 4)
=> A = 4 . 5 + 43 . 5 + ... + 459 . 5
=> A = 5(4 + 43 + ... + 459)
=> A ⋮ 5
A = 4 + 42 + 43 + 44 + ... + 460
=> A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (458 + 459 + 460)
=> A = 4(1 + 4 + 42) + 44(1 + 4 + 42) + ... + 458(1 + 4 + 42)
=> A = 4 . 21 + 44 . 21 + ... + 458 . 21
=> A = 21(4 + 44 + ... + 458)
=> A ⋮ 21
b) Đặt biểu thức trên là B, ta có:
B = 5 + 52 + 53 + 54 + ... + 510
=> B = (5 + 52) + (53 + 54) + ... + (59 + 510)
=> B = 5(1 + 5) + 53(1 + 5) + ... + 59(1 + 5)
=> B = 5 . 6 + 53 . 6 + ... + 59 . 6
=> B = 6(5 + 53 + ... + 59)
=> B ⋮ 6
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5
= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))
= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )
= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20
= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5
4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21
= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )
= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )
= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84
= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21
b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6
= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )
= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )
= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30
= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=2^{2018}-1hayA=2^{2018}-1\)
2; 3 tuong tu
1) A = 1 + 2 + 22 + 23 + .... + 22018
2A = 2 + 22 + 23 + 24 + ..... + 22019
2A - A = ( 2 + 22 + 23 + 24 + ..... + 22019 ) - ( 1 + 2 + 22 + 23 + .... + 22018 )
Vậy A = 22019 - 1
2) B = 1 + 3 + 32 + 33 + ..... + 32018
3A = 3 + 32 + 33 + ...... + 32019
3A - A = ( 3 + 32 + 33 + ...... + 32019 ) - ( 1 + 3 + 32 + 33 + ..... + 32018 )
2A = 32019 - 1
Vậy A = ( 32019 - 1 ) : 2
3) C = 1 + 4 + 42 + 43 + ...... + 42018
4A = 4 + 42 + 43 + ...... + 42019
4A - A = ( 4 + 42 + 43 + ...... + 42019 ) - ( 1 + 4 + 42 + 43 + ...... + 42018 )
3A = 42019 - 1
Vậy A = ( 42019 - 1 ) : 3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\left(1+4+4^2\right)+...+\left(4^{66}+4^{67}+4^{68}\right)=21.1+...+21.4^{66}\)
\(B=21.\left(1+...+4^{66}\right)\)
Vậy tổng chia hết cho 21
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)
c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : B=1+4+4^2+4^3+...+4^2012
=>4B=4(1+4+4^2+4^3+...+4^2012)=4+4^2+4^3+4^4+...+4^2013
=>4B-B=(4+4^2+4^3+4^4+...+4^2013)-(1+4+4^2+4^3+...+4^2012)
=>3B=4^2013-1
Ta có 4^2013=(4^3)^671
Mà 4^3=64 chia cho 21 dư 1
=>(4^3)^671 chia cho 21 dư 1
=>(4^3)^671 -1 chia hết cho 21
Hay 4^2013-1 chia hết cho 21
=>3B chia hết cho 21
Mặt khác lại có:4^2013-1 > 63
=> 3B>3 nhân với 21
B>21(1)
Mà 3B chia hết cho 21(2)
Từ (1) và (2)=>B chia hết cho 21
Vậy ........................................
k cho mình nha
B=4+42+43+...+459+460
\(\Rightarrow\)B=(4+42+43)+(44+45+46)+...+(458+459+460)
\(\Rightarrow\)B=4(1+4+42)+44(1+4+42)+...+458(1+4+42)
\(\Rightarrow\)B=(1+4+42)(4+44+...+458)
\(\Rightarrow\)B=21(4+44+...+458)
Vì 21 \(⋮\)21
\(\Rightarrow\)21(4+44+...+458) \(⋮\)21
\(\Rightarrow\)4+42+43+...+460 \(⋮\)21
\(\Rightarrow\)B \(⋮\)21 (đpcm)
Trả lời:
B = 4 + 42 + 43 + 44 + ... + 460
B = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 458 + 459 + 460)
B = 4 x ( 1 + 4 + 42 ) + 44 x ( 1 + 4 + 42 ) + ... + 458 x ( 1 + 4 + 42 )
B = (4 + 44 + ... + 458) x ( 1 + 4 + 42 )
B = (4 + 44 + ... + 458) x 21
Vì 21 \(⋮\)21
\(\Rightarrow\)(4 + 44 + ... + 458) x 21 \(⋮\)21
Hay B \(⋮\)21 (đpcm)
Vậy B \(⋮\)21