Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
4a=4+42+43+......+42013
4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)
3a=42013-1
a=42013-1
3
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
a, Ta co : M= ( 1 +4 + 42 ) + ( 43 + 44 + 45 ) +.......................+ ( 42010 + 42011 +42012 )
M = 1. (1+4+16 ) +43. (1+4+16 ) +.........................+ 42010. ( 1+4 +16
M = 1, 21 + 43. 21 +..............................................+ 42010 .21
M= 21.(1+43+.................................... + 42010 ) CHIA HẾT 21
TƯƠNG TƯ
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
\(M=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(M=21+4^3.\left(1+4+4^2\right)+...+4^{2010}.\left(1+4+4^2\right)\)
\(M=21+4^3.21+...+4^{2010}.21\)
\(M=21.\left(1+4^3+....+4^{2010}\right)⋮21\)
a) (1+4+42) + (43+45+46) +.....+ (42010+42011+42012)
= 21 + 43.(1+4+42) +.....+ 42010.(1+ 4 + 42)
= 21 + 43. 21 +....+ 42010. 21
= 21. (1+ 43 +......+ 42010 )
=> tổng chia hết cho 21
1+4+42+43+.........+42012
=(1+4+42)+43.(1+4+42)+............+42010.(1+4+42)
=21+43.21+............+42010.21
=21.(1+43+.......+42010)
Vì 21 chia hết cho 21
=> 21.(1+43+.....+42010) chia hết cho 21
Vậy 1+4+42+43+......+42012 chia hết cho 21
Chúc bn hok tốt nhé
#han sara#
\(1+4+4^2+4^3+4^4+.....+4^{2012}.\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+\left(4^6+4^7+4^8\right)+.....+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+4^3\cdot\left(1+4+4^2\right)+4^6\cdot\left(1+4+4^2\right)+.....+4^{2010}\cdot\left(1+4+4^2\right)\)
\(=21+4^3\cdot21+4^6\cdot21+.....+4^{2010}\cdot21\)
\(=21\left(1+4^3+4^6+...+4^{2010}\right)\)
Có \(21\left(1+4^3+4^6+...+4^{2010}\right)⋮4\)
\(\Rightarrow1+4+4^2+4^3+4^4+.....+4^{2012}⋮4\)\(\left(đpcm\right)\)
a) 4.(1+4)+43.(1+4)+................+459(1+4)
=5.4+5.43+...+5.459
=5.(4+43+.+459) chia hết cho 5
4.(1+4+42)+44.(1+4+42)+...............+458(1+4+42)
=21.4+44.21+..+21.458
=21.(4+44+.+458) chia hết cho 21
b) 5.(1+5)+53(1+5)+.+59(1+5)
=6.(5+53+.............+59) chia hết cho 6
a) Đặt biểu thức trên là A, ta có:
A = 4 + 42 + 43 + 44 + ... + 460
=> A = (4 + 42) + (43 + 44) + ... + (459 + 460)
=> A = 4(1 + 4) + 43(1 + 4) + ... + 459(1 + 4)
=> A = 4 . 5 + 43 . 5 + ... + 459 . 5
=> A = 5(4 + 43 + ... + 459)
=> A ⋮ 5
A = 4 + 42 + 43 + 44 + ... + 460
=> A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (458 + 459 + 460)
=> A = 4(1 + 4 + 42) + 44(1 + 4 + 42) + ... + 458(1 + 4 + 42)
=> A = 4 . 21 + 44 . 21 + ... + 458 . 21
=> A = 21(4 + 44 + ... + 458)
=> A ⋮ 21
b) Đặt biểu thức trên là B, ta có:
B = 5 + 52 + 53 + 54 + ... + 510
=> B = (5 + 52) + (53 + 54) + ... + (59 + 510)
=> B = 5(1 + 5) + 53(1 + 5) + ... + 59(1 + 5)
=> B = 5 . 6 + 53 . 6 + ... + 59 . 6
=> B = 6(5 + 53 + ... + 59)
=> B ⋮ 6
Ta có : B=1+4+4^2+4^3+...+4^2012
=>4B=4(1+4+4^2+4^3+...+4^2012)=4+4^2+4^3+4^4+...+4^2013
=>4B-B=(4+4^2+4^3+4^4+...+4^2013)-(1+4+4^2+4^3+...+4^2012)
=>3B=4^2013-1
Ta có 4^2013=(4^3)^671
Mà 4^3=64 chia cho 21 dư 1
=>(4^3)^671 chia cho 21 dư 1
=>(4^3)^671 -1 chia hết cho 21
Hay 4^2013-1 chia hết cho 21
=>3B chia hết cho 21
Mặt khác lại có:4^2013-1 > 63
=> 3B>3 nhân với 21
B>21(1)
Mà 3B chia hết cho 21(2)
Từ (1) và (2)=>B chia hết cho 21
Vậy ........................................
k cho mình nha
thanks bạn