Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
2
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)
ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1
=> A ≥ 1
=> Min A =1 khi 1/3 ≤ x ≤ 2/3
a, ĐK: \(x\ge0,x\ne9\)
b, \(A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{3}{\sqrt{x}-3}\)
\(=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{3}{\sqrt{x}-3}\)
\(=\dfrac{2}{\sqrt{x}+3}\)
c, ĐK: \(x\ge0,x\ne9\)
\(A>\dfrac{1}{3}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\Leftrightarrow\sqrt{x}+3>6\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)
Vậy \(A>\dfrac{1}{3}\Leftrightarrow x>9\)
d, ĐK: \(x\ge0,x\ne9\)
Ta có: \(x\ge0\forall x\Leftrightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\)\(\Leftrightarrow\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}\le\dfrac{2}{3}\)
Dấu bằng xảy ra \(\Leftrightarrow\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\)
Vậy MaxA = \(\dfrac{2}{3}\Leftrightarrow x=0\)
a/ ĐKXĐ: \(x\ge0;x\ne1\)
= \(\dfrac{x+1+\sqrt{x}}{x+1}:\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]-1\)
= \(\dfrac{x+1+\sqrt{x}}{x+1}:\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)
= \(\dfrac{x+1+\sqrt{x}}{x+1}:\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)
\(=\dfrac{\left(x+1+\sqrt{x}\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)
= \(\dfrac{x+1+\sqrt{x}}{\sqrt{x}-1}-1=\dfrac{x+2}{\sqrt{x}-1}\)
b/ Ta có:
\(Q=P-\sqrt{x}\)
= \(\dfrac{x+2}{\sqrt{x}-1}-\sqrt{x}\)
= \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\dfrac{3}{\sqrt{x}-1}\)
Để Q nhận giá trị nguyên thì \(1+\dfrac{3}{\sqrt{x}-1}\in Z\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}-1}\in Z\) ( vì 1\(\in Z\) )
\(\Leftrightarrow\sqrt{x}-1\inƯ_{\left(3\right)}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=3\\\sqrt{x}-1=-3\\\sqrt{x}-1=1\\\sqrt{x}-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=-2\\\sqrt{x}=2\\\sqrt{x}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=16\left(tm\right)\\\\x=4\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)
Vậy để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên thì x=\(\left\{16;4;0\right\}\)
ĐK:\(x>0,x\ne1\)
a) \(A=\left(\frac{1}{x-\sqrt{x}}+\frac{x+\sqrt{x}+1}{x\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right].\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right].\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Câu a : ĐK : \(x>1\)
\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Câu b : \(A=\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{1}{3}\Leftrightarrow2\sqrt{x}=3\Leftrightarrow x=\dfrac{9}{4}\)
Câu c : \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\left(9\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)\le1-2\sqrt{9}=-5\)
Vậy GTLN là -5 . Khi \(x=\dfrac{1}{9}\)
$a) ĐK:$ \(x>1\)
\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(A=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right].\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\\ A=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\\ A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
$b)$ \(A=\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{1}{3}\Leftrightarrow2\sqrt{x}=3\Leftrightarrow x=\dfrac{9}{4}\)
$c)$ \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\left(9\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)\le1-2\sqrt{9}=-5\)
Vậy $GTLN$ là $-5$ . Khi \(x=\dfrac{1}{9}\)
a , thu gọn
\(A=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3x+3}{x-9}\right]:\left[\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right]\)
\(A=\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(A=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(A=-\dfrac{3}{\sqrt{x}+3}\)
b , tự làm
\(a\text{) Để biểu thức xác định }\\ \text{thì }\Rightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3\ne0\\x-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
\(\text{b) }A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\\ =\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right)\\ =\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ =\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ =\dfrac{-3}{\sqrt{x}+3}\)
\(c\text{) Để }A\le-\dfrac{1}{3}\\ \text{thì }\Rightarrow\dfrac{-3}{\sqrt{x}+3}\le-\dfrac{1}{3}\\ \Rightarrow\dfrac{3}{\sqrt{x}+3}\ge\dfrac{1}{3}\\ \Rightarrow\dfrac{3}{\sqrt{x}+3}-\dfrac{1}{3}\ge0\\ \Rightarrow\dfrac{9}{3\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}\ge0\\ \Rightarrow\dfrac{9-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}\ge0\\ \Rightarrow\dfrac{\sqrt{x}-6}{\sqrt{x}+3}\le0\\ \Leftrightarrow\sqrt{x}-6\ge0\left(\text{Vì }\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}\ge6\\ \Leftrightarrow x\ge36\)
\(d\text{) Do }\sqrt{x}\ge0\\ \Rightarrow\sqrt{x}+3\ge3\\ \Rightarrow\dfrac{-3}{\sqrt{x}+3}\ge-1\\ \text{Dấu }"="\text{ }xảy\text{ }ra\text{ }khi:\text{ }x=0\)
Vậy..............
a/ đkxđ: x > 0; x≠1
b/ \(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right):\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\dfrac{x-1}{2\sqrt{x}}\cdot\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{x-1}{2\sqrt{x}}\cdot\dfrac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)
\(=\dfrac{-4x}{2\sqrt{x}}=-2\sqrt{x}\)
a: \(A=\dfrac{1}{\sqrt{x}-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1-x-2-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{-2x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
Để A>0 thì \(\dfrac{-2x+\sqrt{x}}{\sqrt{x}-1}>0\)
=>\(\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}< 0\)
=>1/2<căn x<1
=>1/4<x<1
b: \(B=\dfrac{2}{A}+\sqrt{x}\)
\(=\dfrac{2\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{-2x+\sqrt{x}}+\sqrt{x}\)
\(=\dfrac{2\left(x\sqrt{x}-1\right)-2x\sqrt{x}+x}{-2x+\sqrt{x}}=\dfrac{x-2}{-2x+\sqrt{x}}=\dfrac{-\left(x-2\right)}{2x-\sqrt{x}}< =0\)
Dấu '=' xảy ra khi x=2