Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
- Ta có : \(\Delta ABC\) vuông tại C ( GT )
=> \(\widehat{A}+\widehat{B}=90^o\)
=> \(\left\{{}\begin{matrix}SinA=CosB\\tangA=CotgB\end{matrix}\right.\)
- Ta có : \(\frac{SinA}{CosB}-\frac{tangA}{cotgB}=\frac{SinA}{SinA}-\frac{cotgB}{cotgB}=1-1=0\)
Bài 3 :
- Ta có : \(75^o+15^o=90^o\)
=> \(Sin15^o=Cos75^o\)
- Ta lại có : \(1+tan^275^o=\frac{1}{Cos^275^o}\) ( I )
Mà \(tg75^o=2+\sqrt{3}\)
=> \(tg^275^o=\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)
Thay \(tg^275^o=7+4\sqrt{3}\) vào ( I ) ta được :
\(1+7+4\sqrt{3}=\frac{1}{Cos^275^o}\)
=> \(Cos75^o=\frac{1}{2\sqrt{2+\sqrt{3}}}\)
=> \(Sin15^o=\frac{1}{2\sqrt{2+\sqrt{3}}}\)
a)
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+3^2=\frac{1}{cos^2a}\)
\(10=\frac{1}{cos^2a}\)
\(cos^2a=\frac{1}{10}\)
\(cosa=\pm\sqrt{\frac{1}{10}}=\pm\frac{1}{\sqrt{10}}\)
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{1}{10}=1\)
\(sin^2a=\frac{9}{10}\)
\(sina=\pm\sqrt{\frac{9}{10}}=\pm\frac{3}{\sqrt{10}}\)
Vì tan = 3 nên M có 2 trường hợp :
TH1 :
sin và cos cùng dương
\(\Rightarrow M=\frac{\frac{1}{\sqrt{10}}+\frac{3}{\sqrt{10}}}{\frac{1}{\sqrt{10}}-\frac{3}{\sqrt{10}}}\)
\(=\frac{\frac{4}{\sqrt{10}}}{-\frac{2}{\sqrt{10}}}\)
= -2
TH2 :
Cả sin và cos cùng âm
\(\Rightarrow M=\frac{-\frac{1}{\sqrt{10}}+\left(-\frac{3}{\sqrt{10}}\right)}{-\frac{1}{\sqrt{10}}-\left(-\frac{3}{\sqrt{10}}\right)}\)
=\(\frac{-\frac{4}{\sqrt{10}}}{\frac{2}{\sqrt{10}}}\)
= -2
b)
\(B=\frac{sin15+cos15}{cos15}-cot75\)
=\(\frac{sin15}{cos15}+\frac{cos15}{cos15}-cot75\)
=\(tan15+1-cot75\)
=\(cot75+1-cot75\)
= 1
Bạn chép nhầm đề rồi, con \(\frac{3tan36}{cot25}\) ko rút gọn được, nó là \(\frac{3tan75}{cot25}\) hoặc \(\frac{3tan36}{cot54}\) mới hợp lý
\(a.\sqrt{\left(2x-5\right)^2}=7\Leftrightarrow2x-5=7\)
\(\Leftrightarrow2x=12\Leftrightarrow x=6\)
b, Máy mình lỗi font nên không làm đc
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)(ĐK : \(x\ge2;y\ge3;z\ge5\))
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Vì \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)nên phương trình tương đương với :
\(\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\)(TMĐK)
Vậy nghiệm của phương trình : \(\left(x;y;z\right)=\left(3;7;14\right)\)
cho tam giac ABC vuong tai A , AH vuong goc BC , goi E,F lan luot la hinh chieu vuong goc cua H len AB va AC. Đat AB=x, BC=2a( a la hằng so k doi).
a) cm: AH.AH.AH=BC.BE.BF=BC.HE.HF
b) tinh dien h tam giac AEF theo a va x
tim x de dien h tam giac AEF đặt GTNN
\(tan75^0=cot\left(90^0-75^0\right)=cot15^0\) tương tự ta có:
\(tan15.tan25.tan35...tan75=tan15.tan75.tan25.tan65.tan35.tan55.tan45\)
\(=tan15.cot15.tan25.cot25.tan35.cot35.tan45\)
\(=1.1.1=1\)
b/ \(sina=\pm\sqrt{1-cos^2a}=\pm\frac{21}{29}\)
\(\Rightarrow tana=\frac{sina}{cosa}=\pm\frac{21}{20}\); \(cota=\frac{1}{tana}=\pm\frac{20}{21}\)