\(\frac{SinA}{CosB}-\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

Bài 1 :

- Ta có : \(\Delta ABC\) vuông tại C ( GT )

=> \(\widehat{A}+\widehat{B}=90^o\)

=> \(\left\{{}\begin{matrix}SinA=CosB\\tangA=CotgB\end{matrix}\right.\)

- Ta có : \(\frac{SinA}{CosB}-\frac{tangA}{cotgB}=\frac{SinA}{SinA}-\frac{cotgB}{cotgB}=1-1=0\)

Bài 3 :

- Ta có : \(75^o+15^o=90^o\)

=> \(Sin15^o=Cos75^o\)

- Ta lại có : \(1+tan^275^o=\frac{1}{Cos^275^o}\) ( I )

\(tg75^o=2+\sqrt{3}\)

=> \(tg^275^o=\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)

Thay \(tg^275^o=7+4\sqrt{3}\) vào ( I ) ta được :

\(1+7+4\sqrt{3}=\frac{1}{Cos^275^o}\)

=> \(Cos75^o=\frac{1}{2\sqrt{2+\sqrt{3}}}\)

=> \(Sin15^o=\frac{1}{2\sqrt{2+\sqrt{3}}}\)

29 tháng 2 2020

giúp mình với Nguyễn Ngọc Lộc ?Amanda?Trần Quốc KhanhAkai HarumaNguyễn Lê Phước ThịnhPhạm Lan HươngHoàng Thị Ánh Phương Trung NguyenNguyễn Thành TrươngNatsu Dragneel 2005

7 tháng 7 2016

A B C M H

Ta có : \(\left(sin\alpha+cos\alpha\right)^2=sin^2\alpha+cos^2\alpha+2sin\alpha.cos\alpha\) (1)

Lại có : \(sin^2\alpha=\frac{AB^2}{BC^2}\) ; \(cos^2\alpha=\frac{AC^2}{BC^2}\) \(\Rightarrow sin^2\alpha+cos^2\alpha=\frac{AB^2+AC^2}{BC^2}=\frac{BC^2}{BC^2}=1\) (2)

Kẻ đường cao AH (H thuộc BC)

Ta sẽ chứng minh \(sin\beta=2sin\alpha.cos\alpha\)

Xét tam giác vuông HMA có : \(sin\beta=\frac{AH}{AM}\) 

Lại có \(AH=\frac{AB.AC}{BC}\) ; \(AM=\frac{BC}{2}\) \(\Rightarrow sin\beta=\frac{\frac{AB.AC}{BC}}{\frac{BC}{2}}=\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=2sin\alpha.cos\alpha\)(3)

Từ (1) , (2) , (3) ta có điều phải chứng minh.

 

15 tháng 7 2019

1) a) Từ C dựng đường cao CF 

Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1) 

Từ A dựng đường cao AH 

Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2) 

(1), (2) => đpcm 

b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)

Có: \(BF=c-AF=c-b.\cos A\)

Py-ta-go: 

\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)

\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm) 

c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)

bài 2 mk có làm r bn ib mk gửi link nhé