Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(x\ge2,y\ge3,z\ge4\) .
\(pt\Leftrightarrow x+y+z-6=2\sqrt{x-2}+2\sqrt{y-3}+2\sqrt{z-4}\)
\(\Leftrightarrow\left[\left(x-2\right)-2\sqrt{x-2}+1\right]+\left[\left(y-3\right)-2\sqrt{y-3}+1\right]+\left[\left(z-4\right)-2\sqrt{z-4}+1\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-4}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\left(TM\right)\)
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
\(DK:\hept{\begin{cases}x\ge2\\y\ge3\\z\ge5\end{cases}}\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\)
\(a,\) Sửa đề: \(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}=5\)
Ta thấy \(3x^2-12x+16=3\left(x-2\right)^2+4\ge4\Leftrightarrow\sqrt{3x^2-12x+16}\ge\sqrt{4}=2\)
\(y^2-4y+13=\left(y-2\right)^2+9\ge9\Leftrightarrow\sqrt{y^2-4y+13}\ge\sqrt{9}=3\)
Cộng vế theo vế 2 BĐT trên:
\(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}\ge2+3=5\)
Dấu \("="\Leftrightarrow x=y=2\)
Vậy pt có nghiệm \(\left(x;y\right)=\left(2;2\right)\)
\(b,x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ \Leftrightarrow x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\\ \Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5+6\sqrt{z-5}+9\right)=0\\ \Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y-3=4\\z-5=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)(ĐK : \(x\ge2;y\ge3;z\ge5\))
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Vì \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)nên phương trình tương đương với :
\(\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\)(TMĐK)
Vậy nghiệm của phương trình : \(\left(x;y;z\right)=\left(3;7;14\right)\)
cho tam giac ABC vuong tai A , AH vuong goc BC , goi E,F lan luot la hinh chieu vuong goc cua H len AB va AC. Đat AB=x, BC=2a( a la hằng so k doi).
a) cm: AH.AH.AH=BC.BE.BF=BC.HE.HF
b) tinh dien h tam giac AEF theo a va x
tim x de dien h tam giac AEF đặt GTNN