Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Ta có y ' = 3 x 2 + 4 ( m - 1 ) x + m 2 - 4 m + 1 . Hàm số có hai cực trị
=> y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> 4 ( m - 1 ) 2 - 3 ( m 2 - 4 m + 1 ) > 0
<=> m 2 + 4 m + 1 > 0
Áp dụng Vi-ét cho phương trình y’ = 0 có hai nghiệm phân biệt x 1 , x 2 ta có
Đối chiếu điều kiện (*) có m = 5 hoặc m = 1
Chọn C
Ta có: y ' = 2 x 2 - 2 m x - 2 ( 3 m 2 - 1 )
g ( x ) = x 2 - m x - 3 m 2 + 1 là tam thức bậc hai có ∆ = 13 m 2 - 4
Do đó hàm số có hai điểm cực trị khi và chỉ khi y ' có hai nghiệm phân biệt
⇔ g ( x ) có hai nghiệm phân biệt
x 1 ; x 2 là các nghiệm của g(x) nên theo định lý Vi-ét, ta có
Đối chiếu với điều kiện (1), ta thấy chỉ m = 2 3 thỏa mãn yêu cầu bài toán
Chọn B
y ' = m x 2 - 2 ( m - 1 ) x + 3 ( m - 2 )
Yêu cầu của bài toán
⇔
y
'
=
0
có hai nghiệm phân biệt
x
1
,
x
2
thỏa mãn:
x
1
+
2
x
2
=
1
+ Ta có: y' = x2 + 2(m+3)x + 4(m+3)
Yêu cầu của bài toán tường đương y’ =0 có hai nghiệm phân biệt x1; x2 thỏa mãn: -2 < x1< x2
Chọn C
\(y'=6x^2-6\left(m+1\right)x+6m\)
\(y'=0\Leftrightarrow x^2-\left(m+1\right)x+m=0\)
\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=m\end{matrix}\right.\)
\(\Rightarrow1^2+m^2=2\Rightarrow m=\pm1\)
Có 2 giá trị m nguyên thỏa mãn
Lời giải:
$y'=3x^2-2(m-1)x-1$
Để hàm số có 2 điểm cực trị $x_1,x_2$ thì pt $y'=0$ có 2 nghiệm phân biệt $x_1,x_2$. Điều này xảy ra khi $\Delta'=(m-1)^2+3>0\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=\frac{2(m-1)}{3}$
Khi đó:
$3(x_1+x_2)=2$
$\Leftrightarrow 2(m-1)=2$
$\Leftrightarrow m-1=1$
$\Leftrightarrow m=2$ (tm)
$\Leftright