Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2x-1\right)=-8\)
\(2x=-8+1\)
\(2x=-7\)
\(x=-7:2\)
\(x=-3,5\)
a) (2x - 1) = -8
⇒ 2x = -8 + 1
⇒ 2x = -7
b) (3x - 2)\(^2\) = \(\frac{1}{49}\)
Ta có: \(\frac{1}{49}\) = \(\frac{1}{7}\). \(\frac{1}{7}\) hoặc \(\frac{1}{49}\) = \(\frac{-1}{7}\). \(\frac{-1}{7}\)
TH1: 3x - 2 = \(\frac{1}{7}\) TH2: 3x - 2 = \(\frac{-1}{7}\)
⇒ 3x = \(\frac{1}{7}\)+2 ⇒ 3x = \(\frac{-1}{7}\)+2
⇒ 3x = \(\frac{15}{7}\) ⇒ 3x = \(\frac{13}{7}\)
⇒ x = \(\frac{5}{7}\) ⇒ x = \(\frac{13}{21}\)
Vậy: x = \(\frac{5}{7}\) hoặc x = \(\frac{13}{21}\)
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:
AB2+AC2=BC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Vì /x/ = 1/2 suy ra x=1/2 hoặc x=-1/2.
Với x=1/2 suy ra y =2.1/4-1/2+1=1
Với x=-1/2 suy ra y = 2.1/4+1/2+1=2
b) Vì y = 2x2-x+1 = 1
suy ra 2x2-x=0
x.(2x-1)=0
suy ra x=0 và x=1/2
c) Vì A (-1;4) nên x=-1; y=4
ta có 2.(-1)2+1+1=4 = (4)
nên A(-1;4) thuộc đồ thị hàm số trên
Các điểm tiếp theo làm tương tự nhé
Bài 1:
a) Vì \(\Delta ABC\) vuông cân tại \(A\left(gt\right)\)
=> \(AB=AC\) (tính chất tam giác vuông cân).
+ Ta có: \(\widehat{BAD}+\widehat{BAC}+\widehat{CAE}=\widehat{DAE}.\)
Mà \(\widehat{DAE}=180^0\left(gt\right)\)
=> \(\widehat{BAD}+\widehat{BAC}+\widehat{CAE}=180^0\)
=> \(\widehat{BAD}+90^0+\widehat{CAE}=180^0\)
=> \(\widehat{BAD}+\widehat{CAE}=180^0-90^0\)
=> \(\widehat{BAD}+\widehat{CAE}=90^0\) (1).
+ Vì \(\Delta ACE\) vuông tại \(E\left(gt\right)\)
=> \(\widehat{ACE}+\widehat{CAE}=90^0\) (tính chất tam giác vuông) (2).
Từ (1) và (2) => \(\widehat{BAD}+\widehat{CAE}=\widehat{ACE}+\widehat{CAE}.\)
=> \(\widehat{BAD}=\widehat{ACE}.\)
Xét 2 \(\Delta\) vuông \(BAD\) và \(ACE\) có:
\(\widehat{BDA}=\widehat{AEC}=90^0\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
\(\widehat{BAD}=\widehat{ACE}\left(cmt\right)\)
=> \(\Delta BAD=\Delta ACE\) (cạnh huyền - góc nhọn).
b) Theo câu a) ta có \(\Delta BAD=\Delta ACE.\)
=> \(\left\{{}\begin{matrix}BD=AE\left(3\right)\\AD=CE\left(4\right)\end{matrix}\right.\) (các cạnh tương ứng).
Cộng theo vế (3) và (4) ta được:
\(BD+CE=AE+AD\)
Mà \(AE+AD=DE\left(gt\right)\)
=> \(BD+CE=DE.\)
Hay \(DE=BD+CE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 2:
a: Xét ΔBAE và ΔBHE có
BA=BH
\(\widehat{ABE}=\widehat{HBE}\)
BE chung
Do đó: ΔBAE=ΔBHE
Suy ra: \(\widehat{BAE}=\widehat{BHE}=90^0\)
hay EH\(\perp\)BC
b: Ta có: BA=BH
EA=EH
Do đó: BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC và AK=HC
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC
e: Ta có: BK=BC
nên B nằm trên đường trung trực của CK(1)
Ta có: EK=EC
nên E nằm trên đường trung trực của CK(2)
ta có: MK=MC
nen M nằm trên đường trung trực của CK(3)
Từ (1), (2) và (3) suy ra B,E,M thẳng hàng
1: \(=4^4\cdot\left(0.25\right)^4\cdot\left(\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
2: \(=\left(0.5\right)^4\cdot2^4\cdot2^4=16\)
3: \(=\left(-0.125\right)^7\cdot8^7\cdot8^3=-512\)
4: \(=0.1^7\cdot10^7\cdot10^6=1000000\)
5: \(=\left(-2\right)^{13}\cdot2^8=-2^{21}\)
6: \(=\left(-3\right)^7\cdot\left(-3\right)^4=\left(-3\right)^{11}\)
a) Ta có: \(\frac{3}{8}-\frac{1}{5}+\frac{3}{40}\)
\(=\frac{15}{40}-\frac{8}{40}+\frac{3}{40}\)
\(=\frac{10}{40}=\frac{1}{4}\)
b) Ta có: \(\frac{21}{4}\cdot\frac{3}{8}+\frac{43}{4}\cdot\frac{3}{8}-4\cdot\frac{1}{2}\)
\(=\frac{3}{8}\left(\frac{21}{4}+\frac{43}{4}\right)-2\)
\(=\frac{3}{8}\cdot16-2\)
\(=6-2=4\)
c) Ta có: \(\frac{-5}{9}+\frac{7}{15}+\frac{-2}{11}+\frac{4}{-9}+\frac{8}{15}\)
\(=\left(\frac{-5}{9}+\frac{-4}{9}\right)+\left(\frac{7}{15}+\frac{8}{15}\right)+\frac{-2}{11}\)
\(=-1+1+\frac{-2}{11}\)
\(=\frac{-2}{11}\)
d) Ta có: \(125\%\cdot\left(\frac{-1}{2}\right)^2:\left(1\frac{5}{6}-1.5\right)+2016^0\)
\(=\frac{5}{4}\cdot\frac{1}{4}:\left(\frac{11}{6}-\frac{3}{2}\right)+1\)
\(=\frac{5}{16}\cdot3+1\)
\(=\frac{15}{16}+\frac{16}{16}=\frac{31}{16}\)
Xét A (-1;4) ta có: 4 = -4.(-1) nên điểm A thuộc đồ thị hàm số y = -4x
Xét B (2;-8) ta có : -8 = -4.2 nên điểm B thuộc đồ thị hàm số y = -4x
Xét C (1,5;-6) ta có: -6 = -4.1,5 nên điểm C thuộc đồ thị hàm số y = -4x
Ta thấy ba điểm A,B,C cùng thuộc đồ thị hàm số y = -4x, nên ba điểm A,B,C thẳng hàng
Đáp án cần chọn là D