Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Bai 3 :
N M P 20 25
Áp dụng định lí Py - ta - go vào \(\Delta MNP\)vuông tại N:
MP2 = NP2 + MN2
252 = NP2 + 202
=> NP2 = 625 - 400
=> NP2 = 225
=> NP = 15
Bài 3 :
D E F
Ta có :
EF2 = 262 = 676
DE2 + DF2 = 102 + 242 = 676
=> EF2 = DE2 + DF2
Vậy \(\Delta EDF\) là tam giác vuông tại D
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
a. Xét tam giác BAE và tam giác BHE có:
BA=BH
BE chung
góc ABE=HBE ( phân giác BE )
=> tam giác BAE = tam giác BHE (c.g.c)
=> góc BAE=BHE ( 2 góc tương ứng)
mà góc BAE= 90 độ
=> góc BHE=90 độ => EH ⊥BC .
b.tam giác BAE = tam giác BHE => BA=BH và AE=EH
=> BE là đường trung trực của AH
c.Xét tam giác AKE và tam giác HCE có:
góc AEK=HEC ( đối đỉnh)
AE=EH
góc EAK=EHC (= 90 độ)
=> tam giác AKE = tam giác HCE (g.c.g)
=> EK=EC
d.Có: BA=BH => tam giác BAH cân tại B
=> góc BHA= 180 độ - góc HBA / 2 (1)
Có: BC=BH+HC
BK=BA+AK
mà BH=BA
HC=AK ( do tam giác AKE = tam giác HCE )
=> BC=BK => tam giác BCK cân tại B
=> góc BCK=180 độ - góc HBA /2 (2)
Từ (1) (2) => góc BHA=BCK
mà 2 góc ở vị trí đồng vị
=> AH//CK
e. Xét tam giác BMC và tam giác BMK có:
BC=BK
CM=KM ( M là trung điểm của KC )
BM chung
=> tam giác BMC = tam giác BMK (c.c.c)
=> góc MBC=MBK => BM là tia phân giác của góc B
mà BE cũng là phân giác của góc B
=> ba điểm B, E, M thẳng hàng.
Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.
a,Chứng minh AB = AC.
b,Tính số đo góc CAO
c,Tam giác ABC là tam giác gì ? Vì sao ?
d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO
e,Tính số đo góc CBO?
g,Chứng minh AO là đường trung trực của BC?
Các bạn giúp mình với,huhu
Bài 1:
a) Vì \(\Delta ABC\) vuông cân tại \(A\left(gt\right)\)
=> \(AB=AC\) (tính chất tam giác vuông cân).
+ Ta có: \(\widehat{BAD}+\widehat{BAC}+\widehat{CAE}=\widehat{DAE}.\)
Mà \(\widehat{DAE}=180^0\left(gt\right)\)
=> \(\widehat{BAD}+\widehat{BAC}+\widehat{CAE}=180^0\)
=> \(\widehat{BAD}+90^0+\widehat{CAE}=180^0\)
=> \(\widehat{BAD}+\widehat{CAE}=180^0-90^0\)
=> \(\widehat{BAD}+\widehat{CAE}=90^0\) (1).
+ Vì \(\Delta ACE\) vuông tại \(E\left(gt\right)\)
=> \(\widehat{ACE}+\widehat{CAE}=90^0\) (tính chất tam giác vuông) (2).
Từ (1) và (2) => \(\widehat{BAD}+\widehat{CAE}=\widehat{ACE}+\widehat{CAE}.\)
=> \(\widehat{BAD}=\widehat{ACE}.\)
Xét 2 \(\Delta\) vuông \(BAD\) và \(ACE\) có:
\(\widehat{BDA}=\widehat{AEC}=90^0\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
\(\widehat{BAD}=\widehat{ACE}\left(cmt\right)\)
=> \(\Delta BAD=\Delta ACE\) (cạnh huyền - góc nhọn).
b) Theo câu a) ta có \(\Delta BAD=\Delta ACE.\)
=> \(\left\{{}\begin{matrix}BD=AE\left(3\right)\\AD=CE\left(4\right)\end{matrix}\right.\) (các cạnh tương ứng).
Cộng theo vế (3) và (4) ta được:
\(BD+CE=AE+AD\)
Mà \(AE+AD=DE\left(gt\right)\)
=> \(BD+CE=DE.\)
Hay \(DE=BD+CE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 2:
a: Xét ΔBAE và ΔBHE có
BA=BH
\(\widehat{ABE}=\widehat{HBE}\)
BE chung
Do đó: ΔBAE=ΔBHE
Suy ra: \(\widehat{BAE}=\widehat{BHE}=90^0\)
hay EH\(\perp\)BC
b: Ta có: BA=BH
EA=EH
Do đó: BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC và AK=HC
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC
e: Ta có: BK=BC
nên B nằm trên đường trung trực của CK(1)
Ta có: EK=EC
nên E nằm trên đường trung trực của CK(2)
ta có: MK=MC
nen M nằm trên đường trung trực của CK(3)
Từ (1), (2) và (3) suy ra B,E,M thẳng hàng