Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) + Nếu a/b > 1 thì a/b > b/b => a > b
+ Nếu a > b thì a/b > b/b => a/b > 1 (đpcm)
b) + Nếu a/b < 1 thì a/b < b/b => a < b
+ Nếu a < b thì a/b < b/b => a/b < 1 (đpcm)
Bài 2:
Do \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)
=> \(\frac{a.d}{b.c}< 1\Rightarrow a.d< b.c\left(đpcm\right)\)
bai2
vi a/b > c/d
=>ad/bd >cd/bd
và ad/bd , cd/bd có mẫu chung là bd
<=>ad>cd
Do b> 0 nên ta có:
Tính chất 1: Do \(a< b\Rightarrow ab+a< ab+b\Leftrightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+1}{b+1}\left(đpcm\right).\)
Tính chất 2: Do \(a>b\Rightarrow ab+a>ab+b\Leftrightarrow a\left(b+1\right)>b\left(a+1\right)\)
\(\Leftrightarrow\frac{a}{b}>\frac{a+1}{b+1}\left(đpcm\right).\)
Vì b,d>0 => b+d>0 nên các phép nhân,chia 2 vế BĐT cho b,d hay (b+d) sẽ không đổi dấu BĐT.
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
Xét \(\frac{a}{b}< \frac{a+c}{b+d}\Leftrightarrow a\left(b+d\right)< \left(a+c\right)b\Leftrightarrow ab+ad< ab+bc\Leftrightarrow ad< bc\)---> Đúng
Xét \(\frac{a+c}{b+d}< \frac{c}{d}\Leftrightarrow\left(a+c\right)d< \left(b+d\right)c\Leftrightarrow ad+cd< bc+cd\Leftrightarrow ad< bc\)---> Lại đúng
Vậy ta có đpcm :))
a) \(\frac{a}{b}>1\Rightarrow\frac{a}{b}.b>1.b\Rightarrow a>b\)
\(a>b\Rightarrow\frac{a}{b}>\frac{b}{b}\Rightarrow\frac{a}{b}>1\)
b) \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}.b< 1.b\Rightarrow a< b\)
\(a< b\Rightarrow\frac{a}{b}< \frac{b}{b}\Rightarrow\frac{a}{b}< 1\)
a.\(\frac{a}{b}>1\)=>\(\frac{a}{b}>\frac{b}{b}\)=>a>b
a>b =>\(\frac{a}{b}>\frac{b}{b}\)=>\(\frac{a}{b}>1\)
câu b tương tự
b>0 thì liên quan j đến a
Nếu a<b thì a/b < a+1/b+1