Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x>0\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)
\(A=x-\sqrt{x}=2\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)(do \(\sqrt{x}+1\ge1>0\))
b) \(A=x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)>0\)(do \(x>1\))
\(\Leftrightarrow A=x-\sqrt{x}=\left|A\right|\)
c) \(A=x-\sqrt{x}=\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{1}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(minA=-\dfrac{1}{4}\Leftrightarrow\sqrt[]{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
\(a,A=\dfrac{x\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\left(x>0\right)\\ A=\dfrac{x\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\\ A=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\\ A=2\Leftrightarrow x-\sqrt{x}-2=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow\sqrt{x}=2\left(\sqrt{x}>0\right)\\ \Leftrightarrow x=4\left(tm\right)\)
\(b,x>1\Leftrightarrow\sqrt{x}-1>0\\ \Leftrightarrow\left|A\right|=\left|x-\sqrt{x}\right|=\left|\sqrt{x}\left(\sqrt{x}-1\right)\right|=\sqrt{x}\left(\sqrt{x}-1\right)=A\left(\sqrt{x}>0\right)\)
\(c,A=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\\ A_{min}=-\dfrac{1}{4}\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
\(a,B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\left(x>0;x\ne6\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x+3\sqrt{x}+\sqrt{x}+3+2\sqrt{x}-4-9\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\\)
\(=\dfrac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
`b,` Tớ tính mãi ko ra, xl cậu nha=')
b) Xét hiệu:
\(\dfrac{\sqrt{x}-1}{\sqrt{x}+3}-3\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}-\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\)
\(=\dfrac{\sqrt{x}-1-3\sqrt{x}-9}{\sqrt{x}+3}\)
\(=\dfrac{-2\sqrt{x}-10}{\sqrt{x}+3}\)
\(=\dfrac{-2\left(\sqrt{x}+5\right)}{\sqrt{x}+3}\)
Mà: \(x>0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}+5\ge5>0\\\sqrt{x}+3\ge3>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{\sqrt{x}+5}{\sqrt{x}+3}>0\)
\(\Rightarrow\dfrac{-2\left(\sqrt{x}+5\right)}{\sqrt{x}+3}< 0\)
Vậy: \(\dfrac{\sqrt{x}-1}{\sqrt{x}+3}< 3\forall x>0\)
(giúp cậu nó nha)
\(A^2-A=A\left(A-1\right)=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}=\dfrac{3\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-2\right)^2}>0\)
=>A^2>A
a: Ta có: \(D=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
b: Để D=12 thì D-12=0
\(\Leftrightarrow\sqrt{x}-4=0\)
hay x=16
1: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)
2: \(P=A\cdot B=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
\(\Leftrightarrow P-2=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}>0\)
=>P>2
\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\left(ĐKXĐ:x\ge0;x\ne9\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\sqrt{x}-3}{x-9}\)
\(b,M=P:Q\)
\(=\dfrac{-3\sqrt{x}-3}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
Ta thấy: \(\sqrt{x}\ge0\forall x\)
\(\Rightarrow\sqrt{x}+3\ge3\forall x\)
\(\Rightarrow\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\forall x\)
\(\Rightarrow\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{3}=-1\)
hay \(M\ge-1\)
#Toru
a: Sửa đề: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Khi x=9 thì \(B=\dfrac{\sqrt{9}+1}{\sqrt{9}+2}\)
\(=\dfrac{3+1}{3+2}=\dfrac{4}{5}\)
b: \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{6+\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+6}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+x+2\sqrt{x}-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}+2}\)
c: P=A/B
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
\(P-2=\dfrac{2\sqrt{x}}{\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-2\sqrt{x}-2}{\sqrt{x}+1}\)
\(=\dfrac{-2}{\sqrt{x}+1}< 0\)
=>P<2
a: ĐKXĐ: x>=0; x<>4
\(Q=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\cdot\dfrac{\sqrt{x}-2+2}{2}\)
\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\cdot\dfrac{\sqrt{x}}{2}\)
\(=\dfrac{2\sqrt{x}-4}{x-4}\cdot\dfrac{\sqrt{x}}{2}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
b: \(M=P\cdot Q=\dfrac{\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{1-5\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
\(M\left(M-1\right)=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-5x-x-3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(1-5\sqrt{x}\right)\left(-6x-2\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}+1\right)^2}\)
\(=\dfrac{\sqrt{x}\left(5\sqrt{x}-1\right)\left(6x+2\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}+1\right)^2}\)
TH1: M>=căn M
=>M^2>=M
=>M^2-M>=0
=>5*căn x-1>=0
=>x>=1/25 và x<>4
TH2: M<căn M
=>5căn x-1<0
=>x<1/25
Kết hợp ĐKXĐ, ta được: 0<=x<1/25
a. ĐKXĐ: \(x>0,x\ne1\)
A=Đề\(=\left[\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{-1}{\sqrt{x}}\cdot\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)}\)\(=\frac{-\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
Đề sai hả bạn ?
\(\text{Thấy ngay: }A=x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(+,-\frac{1}{2}< \sqrt{x}-\frac{1}{2}< \frac{1}{2}\Rightarrow\sqrt{A}>A\text{ tương đương với: }0< x< 1\)
x=0;x=1 thì căn A=A;
x>1 thì A> căn A (dễ cm)