
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A > 0 <=> (x-5).(x - 8) > 0
TH1: x-5 > 0 và x - 8 > 0
=> x> 5 và x> 8 => x > 8
TH2: x-5 < 0 và x - 8 < 0
=> x < 5 và x < 8
=> x < 5
Vậy x <5 hoặc x> 8 thì A > 0

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3

b, ĐK: \(x\ne8\)
\(A=\dfrac{x-5}{x-8}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5>0\\x-8>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5< 0\\x-8< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>5\\x>8\end{matrix}\right.\\\left\{{}\begin{matrix}x< 5\\x< 8\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>8\\x< 5\end{matrix}\right.\)

a) ĐK:\(\begin{cases} x + 2≠0\\ x - 2≠0 \end{cases}\)⇔\(\begin{cases} x ≠ -2\\ x≠ 2 \end{cases}\)
Vậy biểu thức P xác định khi x≠ -2 và x≠ 2
b) P= \(\dfrac{3}{x+2}\)-\(\dfrac{2}{2-x}\)-\(\dfrac{8}{x^2-4}\)
P=\(\dfrac{3}{x+2}\)+\(\dfrac{2}{x-2}\)-\(\dfrac{8}{(x-2)(x+2)}\)
P= \(\dfrac{3(x-2)}{(x-2)(x+2)}\)+\(\dfrac{2(x+2)}{(x-2)(x+2)}\)-\(\dfrac{8}{(x-2)(x+2)}\)
P= \(\dfrac{3x-6+2x+4-8}{(x-2)(x+2)}\)
P=\(\dfrac{5x-10}{(x-2)(x+2)}\)
P=\(\dfrac{5(x-2)}{(x-2)(x+2)}\)
P=\(\dfrac{5}{x+2}\)
Vậy P=\(\dfrac{5}{x+2}\)

a) Điều kiện xác định của \(P\) là:
\(\left(x+1\right)\left(2x-6\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)
b) \(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\) (\(x\ne-1,x\ne3\))
\(=\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}\)
\(P=1\Rightarrow\dfrac{3x}{2\left(x-3\right)}=1\Rightarrow3x=2\left(x-3\right)\Leftrightarrow x=-6\) (thỏa mãn)
c) \(P>0\Rightarrow\dfrac{3x}{2\left(x-3\right)}>0\Leftrightarrow\dfrac{x}{x-3}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< 0\end{matrix}\right.\)
Kết hợp với điều kiện xác định ta được để \(P>0\) thì \(x>3\) hoặc \(x< 0,x\ne-1\).

a ) \(\text{A}=\left(\frac{3}{x+1}+\frac{1}{1-x}-\frac{8}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{3.\left(1-x\right)+1.\left(1+x\right)}{\left(1+x\right).\left(1-x\right)}-\frac{8}{1-x^2}\right).\frac{x^2-1}{1-2x}\)
\(=\frac{3-3x+1+x-8}{1-x^2}.\frac{x^2-1}{1-2x}\)
\(=\frac{-2x-4}{1-x^2}.\frac{x^2-1}{1-2x}\)
\(=\frac{-2x^3+2x-4x^2+4}{1-2x-x^2+2x^3}\)
\(=\frac{-2x^3-4x^2+2x+4}{2x^3-x^2-2x+1}\) ( * )
b ) Ta có : | 3x + 5 | = 2
\(\Leftrightarrow\orbr{\begin{cases}3x+5=2\\3x+5=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-3\\3x=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{7}{3}\end{cases}}\)
Ta có : \(A=\frac{-2x^3-4x^2+2x+4}{2x^3-x^2-2x+1}\)
Đkxđ : \(2x^3-x^2-2x+1\ne0\) ( vì mẫu phải khác 0 )
Thay x = -1 vào ( * ) ta được : \(\frac{-2.\left(-1\right)^3-4.\left(-1\right)^2+2.\left(-1\right)+4}{2.\left(-1\right)^3-\left(-1\right)^2-2.\left(-1\right)+1}=\frac{0}{0}\left(lo\text{ại}\right)\)
Thay x = -7/3 vào ( * ) ta được : \(\frac{-2.\left(-\frac{7}{3}\right)^3-4.\left(-\frac{7}{3}\right)^2+2.\left(-\frac{7}{3}\right)+4}{2.\left(-\frac{7}{3}\right)^3-\left(-\frac{7}{3}\right)^2-2.\left(-\frac{7}{3}\right)+1}=-\frac{2}{17}\left(nh\text{ận}\right)\)
A có giá trị dương <=> A \(\ge\) 0
\(\Leftrightarrow\frac{-2x^3-4x^2+2x+4}{2x^3-x^2-2x+1}\ge0\)
\(\Leftrightarrow-2x^3-4x^2+2x+4\le0\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2\\x< -1\end{cases}}\) ( cái này là bất phương trình , dùng máy tính bấm ra nha bạn )
sai rồi, theo mk câu a bạn chưa rút gọn hết, cái gt x=-1 k cần thay vì theo ĐKXĐ, x khác -1 mà

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
b: \(C=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C=0 thì x-1=0
hay x=1
c: Để C>0 thì x-1>0
hay x>1
Vậy: \(\left\{{}\begin{matrix}x\in Z\backslash\left\{1\right\}\\x\notin\left\{2;-2\right\}\end{matrix}\right.\)
A=\(\frac{x-5}{x-8}\)
x=8