Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7
=> (n+9)(n+2) chia hết cho 7
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
mà: (n+9)(n+2) +21 chia hết cho 49
=> 21 chia hết cho 49 vô lí => đpcm
Bài 2: A=3^ (2*n) + 3^n + 1
n không chia hết cho 3 nên ta xét 2 trường hợp:
* n =3k +1:
A = 3^ (6k + 3) + 3^(3k +1) +1= 9.27^2k +3.27^ +1
= 9.(26+1)^2k + 3.(26 +1)^k +1
= 9(2.13 +1)^2k + 3.(2.13 +1)^k +1
A đồng dư với (9 +3 +1)= 13 theo đồng dư 0 theo (mod 13)
vậy A chia hết cho 13.
( Mình giải thích thêm nhé:
(2.13 +1)^2k chia cho 13 dư 1
=> 9(2.13 +1)^2k chia cho 13 dư 9
(2.13 +1)^k chia 13 dư 1
=> 3.(2.13 +1)^k chia 13 dư 1
=> A chia 13 dư 9 + 3 +1 = 13
A = 13.k +13 với k nguyên
A/13 = k + 1 la số nguyên => A chia hết cho 13
khi triển khai (x+1)^n = thì các hạng tử đều chứa x trừ hạng tử cuối = 1 nên (x+1)^n chia cho x dư 1.)
* n = 3k +2:
A = 3^(6k +4) + 3^(6k +2) +1=81.27^2k +9.27^k +1
= 81.(2.13+1)^2k + 9(2.13 +1)^k +1
A đồng dư với ( 81 + 9 +1) = 91 đồng dư 0 theo (mod 13)
vậy A chia hết cho 13
Ta có:
giả sử: A = n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7
=> (n+9)(n+2) chia hết cho 7
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
mà: (n+9)(n+2) +21 chia hết cho 49
=> 21 chia hết cho 49 vô lí => đpcm
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABM\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{BAM}=\widehat{CAM}\) (vì \(AM\) là tia phân giác của \(\widehat{A}\))
Cạnh AM chung
=> \(\Delta ABM=\Delta ACM\left(c-g-c\right).\)
=> \(BM=CM\) (2 cạnh tương ứng).
b) Xét 2 \(\Delta\) \(ABI\) và \(ACI\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{BAI}=\widehat{CAI}\) (vì \(AI\) là tia phân giác của \(\widehat{A}\))
Cạnh AI chung
=> \(\Delta ABI=\Delta ACI\left(c-g-c\right)\)
=> \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng).
Ta có: \(\widehat{AIB}+\widehat{AIC}=180^0\) (vì 2 góc kề bù).
Mà \(\widehat{AIB}=\widehat{AIC}\left(cmt\right)\)
=> \(2.\widehat{AIB}=180^0\)
=> \(\widehat{AIB}=180^0:2\)
=> \(\widehat{AIB}=90^0.\)
=> \(\widehat{AIB}=\widehat{AIC}=90^0\)
=> \(AI\perp BC.\)
Mà \(A'H\perp BC\left(gt\right)\)
=> \(AI\) // \(A'H\) (từ vuông góc đến song song).
=> \(\widehat{BA'H}=\widehat{BAI}\) (vì 2 góc đồng vị)
Vì \(AI\) là tia phân giác của \(\widehat{A}\left(gt\right)\)
=> \(\widehat{BAI}=\frac{1}{2}\widehat{A}\)
Hay \(\widehat{A}=2.\widehat{BAI}\)
Mà \(\widehat{BAI}=\widehat{BA'H}\left(cmt\right).\)
=> \(\widehat{A}=2.\widehat{BA'H}\left(đpcm\right).\)
Chúc bạn học tốt!
b: Giả sử B chia hết cho 49
=>B chia hết cho 7
=>(n+2)(n+9)+21 chia hết cho 7
=>(n+2)(n+9) chia hết cho 7
Vì n+9-n-2=7 chia hết cho 7 nên n+9 và n+2 đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
=>(n+2)(n+9)+21 chia hết cho 49(vô lý)
=>B không chia hết cho 49
a: \(A=n^3-n-6n\)
\(=n\left(n-1\right)\left(n+1\right)-6n\)
Vì n;n-1;n+1 là 3 số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
hay A chia hết cho 6