\(a\ge\frac{1}{2}\). Chứng minh rằng: \(\sqrt{2a-1}\le a\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2015

Áp dụng bđt \(\sqrt{ab}\le\frac{a+b}{2}\)ta có
\(\sqrt{1\left(2a-1\right)}\le\frac{1+2a-1}{2}=a\)
từ đó suy ra ĐPCM

Câu 1: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).Câu 4: Cho \(a,b,c,d>0\). Chứng minh...
Đọc tiếp

Câu 1Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).

Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).

Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).

Câu 4: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\).

Câu 5: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\).

Câu 6: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng: 

\(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge1\).

Câu 7: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Câu 8: Cho \(a_1,a_2,...,a_{n-1},a_n>0\)và \(a_1+a_2+...+a_{n-1}+a_n=n\)với \(n\)nguyên dương. Chứng minh:

\(\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_{n-1}+1}+\frac{1}{a_n+1}\ge\frac{n}{2}\).

 

 

0
26 tháng 9 2016

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)

8 tháng 1 2020

Với a, b > 0

Ta có: \(2\sqrt{a+3}\le\frac{\left(a+3\right)+4}{2}\)

\(\Leftrightarrow2\sqrt{a+3}\le\frac{a+2}{2}\)

\(\Leftrightarrow\frac{2}{\sqrt{a+3}}\ge\frac{8}{a+7}\)

Ta có: \(2\sqrt{b+3}\le\frac{\left(b+3\right)+4}{2}\)

\(\Leftrightarrow\frac{1}{\sqrt{b+3}}\ge\frac{4}{b+7}\)

\(\Rightarrow\frac{2}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\ge\frac{8}{a+7}+\frac{4}{b+7}=\frac{4}{a+7}+\frac{4}{a+7}+\frac{4}{b+7}\)

\(\ge4\left(\frac{1}{a+7}+\frac{1}{a+7}+\frac{1}{b+7}\right)\)

\(\ge4.\frac{9}{2a+b+21}=4.\frac{9}{3+21}=\frac{36}{24}\)

\(\ge\frac{3}{2}\left(đpcm\right)\)

Vậy\(\frac{2}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\ge\frac{3}{2}\)

8 tháng 1 2020

Cách khác:

Ta có: \(VT=\frac{2}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}=\frac{2}{\sqrt{\left(a+1\right)+2}}+\frac{1}{\sqrt{\left(b+1\right)+2}}\ge\frac{2}{\frac{a+1+2}{2}}+\frac{1}{\frac{b+1+2}{2}}=\frac{4}{a+3}+\frac{2}{b+3}\)(1) (BĐT Cô-si)

Lại có: \(2a+b\le3\Leftrightarrow\left\{{}\begin{matrix}a+3\ge3a+b\\b+3\ge2\left(a+b\right)\end{matrix}\right.\). Thay vào (1) ta được:

\(VT\ge\frac{4}{3a+b}+\frac{1}{a+b}\)

Áp dụng BĐT Schwarz, ta được:

\(VT\ge\frac{4}{3a+b}+\frac{1}{a+b}\ge\frac{\left(2+1\right)^2}{4a+2b}=\frac{3^2}{2\left(2a+b\right)}\ge\frac{3^2}{2.3}=\frac{3}{2}\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi a=b=1

28 tháng 12 2017

C.m BĐT phụ \(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)

5 tháng 6 2018

lm giúp e vs ạkhocroi

28 tháng 7 2017

a)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)

\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)

\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)

\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)

\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)

Xảy ra khi \(a=b=c=2\)

1 tháng 12 2016

Bạn bổ sung thêm điều kiện a,b là các số không âm nhé :)

Áp dụng BĐT \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\) được : 

\(\sqrt{\frac{a^2+b^2}{2}}=\frac{1}{\sqrt{2}}.\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}.\frac{1}{\sqrt{2}}=\frac{a+b}{2}\)

Đẳng thức xảy ra khi a = b 

30 tháng 11 2016

Bất đẳng thức côsi

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện