Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
Ta có: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a - 2√ab + b ≥ 0
<=> a + b ≥ 2√ab
<=> (a + b)/2 ≥ √ab
dau "=" xay ra khi √a - √b = 0 <=> a = b
Vì A,b,c.0 va a+b+c=0
Suy ra th1a=1; b=0;c=0
th2 a=0;b=1;c=0
th3 a=0;b=0;c=0
Dawt
<=> (a+b)^2+(b+c)+(c+a)^2<=36
<=>a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ac+a^2<=36
<=>2(a^2+b^2+c^2)+2(ab+bc+ac)<=36
<=>2(a(a+b)+(b(b+c)+c(c+a)<=36
Thay số Vào ta thấy Cả 3 trường hợp đều tm
Mk nghĩ ko có cho bài giải naytương lại đâu
6 hay \(\sqrt{6}\)vậy bạn? Khi thay \(a=b=c=\frac{1}{3}\)thì nó ra \(\sqrt{6}\)cơ
Phá ngoặc
Rồi tính bình thường
Trượt tiêu khi có thể
Sẽ ra đc kết quả VT
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(\sqrt{a}+\sqrt{a+2}< 2\sqrt{a+1}\)
\(\Leftrightarrow a+2\sqrt{a^2+2a}+a+2< 4a+4\)
\(\Leftrightarrow2a+2>2\sqrt{a^2+2a}\)
\(\Leftrightarrow a^2+2a+1>a^2+2a\)
\(\Leftrightarrow1>0\)
Chắc là cái cuối đúng.