K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

Vì A,b,c.0 va a+b+c=0

Suy ra th1a=1; b=0;c=0

           th2 a=0;b=1;c=0

          th3 a=0;b=0;c=0

Dawt

<=> (a+b)^2+(b+c)+(c+a)^2<=36

<=>a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ac+a^2<=36

<=>2(a^2+b^2+c^2)+2(ab+bc+ac)<=36

<=>2(a(a+b)+(b(b+c)+c(c+a)<=36

Thay số Vào ta thấy Cả 3 trường hợp đều tm

Mk nghĩ ko có  cho bài giải naytương lại đâu

5 tháng 8 2017

6 hay \(\sqrt{6}\)vậy bạn? Khi thay \(a=b=c=\frac{1}{3}\)thì nó ra \(\sqrt{6}\)

NV
10 tháng 3 2023

\(\dfrac{a}{\sqrt{b^3+1}}=\dfrac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\ge\dfrac{2a}{b+1+b^2-b+1}=\dfrac{2a}{b^2+2}\)

Tương tự và cộng lại:

\(VT\ge\dfrac{2a}{b^2+2}+\dfrac{2b}{c^2+2}+\dfrac{2c}{a^2+2}=a-\dfrac{ab^2}{b^2+2}+b-\dfrac{bc^2}{c^2+2}+c-\dfrac{ca^2}{a^2+2}\)

\(VT\ge6-\left(\dfrac{ab^2}{b^2+2}+\dfrac{bc^2}{c^2+2}+\dfrac{ca^2}{c^2+2}\right)\)

Ta có:

\(\dfrac{ab^2}{b^2+2}=\dfrac{2ab^2}{2b^2+4}=\dfrac{2ab^2}{b^2+b^2+4}\le\dfrac{2ab^2}{3\sqrt[3]{4b^4}}=\dfrac{a}{3}\sqrt[3]{2b^2}=\dfrac{a}{3}\sqrt[3]{2.b.b}\le\dfrac{a}{9}\left(2+b+b\right)\)

Tương tự và cộng lại:

\(VT\ge6-\left(\dfrac{2a}{9}\left(b+1\right)+\dfrac{2b}{9}\left(c+1\right)+\dfrac{2c}{9}\left(a+1\right)\right)\)

\(=6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{9}\left(ab+bc+ca\right)\ge6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{27}\left(a+b+c\right)^2=2\)

Dấu "=" xảy ra khi \(a=b=c=1\)

30 tháng 9 2019

Vì a,b,c là số thực dương nên \(\sqrt{a^2}=a;\sqrt{b^2}=b;\sqrt{c^2}\)=c. Vậy ta có

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)=\(\frac{a}{a+1}-1+\frac{b}{b+1}-1\)+\(\frac{c}{c+1}-1+3\) 

=3-(  \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)) =A

ta có bdt  \(9\le\left(a+1+b+1+c+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)(dễ dàng chứng mình bằng bdt cosi).

=>\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\)\(\frac{9}{3+\sqrt{3}}\)=> A\(\le3-\frac{9}{3+\sqrt{3}}=\frac{3\sqrt{3}}{3+\sqrt{3}}=\frac{3}{\sqrt{3}+1}\)

dấu = khi a=b=c=\(\frac{\sqrt{3}}{3}\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

23 tháng 11 2020

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

24 tháng 11 2020

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

NV
17 tháng 2 2022

Do a;b;c là 3 cạnh của 1 tam giác

\(\Rightarrow a< b+c\Rightarrow2a< a+b+c=6\Rightarrow a< 3\)

Chứng minh tương tự ta được: \(b< 3;c< 3\)

\(\Rightarrow3-a>0;3-b>0,3-c>0\)

Do đó:

\(\left(3-a\right)\left(3-b\right)\left(3-c\right)\le\left(\dfrac{3-a+3-b+3-c}{3}\right)^3=\left(\dfrac{9-\left(a+b+c\right)}{3}\right)^3=1\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27\le1\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-27\le1\)

\(\Leftrightarrow abc\ge3\left(ab+bc+ca\right)-28\)

\(\Leftrightarrow2abc\ge6\left(ab+bc+ca\right)-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a+b+c\right)^2-56=52\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=2\)

NV
17 tháng 2 2022

BĐT vế phải:

Vẫn từ chứng minh trên, \(3-a>0;3-b>0,3-c>0\)

\(\Rightarrow\left(3-a\right)\left(3-b\right)\left(3-c\right)>0\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27>0\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-27>0\)

\(\Leftrightarrow abc< 3\left(ab+bc+ca\right)-27\)

\(\Leftrightarrow2abc< 6\left(ab+bc+ca\right)-54\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)-54\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc< 3\left(a+b+c\right)^2-54=54\) (đpcm)