K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

Ta có:

\(L=\frac{\sum\left(abc+a^2b+ca^2+c^2a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{3abc+2\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)}{2abc+\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)}\).

Ta chứng minh \(L\ge\frac{3}{2}\). (*)

Thật vậy:

\(\left(\cdot\right)\Leftrightarrow a^2b+b^2c+c^2a\ge ab^2+bc^2+ca^2\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)\ge0\left(Q.E.D\right)\).

(*) được chứng minh.

Vậy Min P = 0,125 khi a = b = c.

NV
10 tháng 9 2020

\(L=\frac{a+b-b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1-\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(L=b\left(\frac{1}{b+c}-\frac{1}{a+b}\right)+\frac{c}{c+a}-\frac{1}{2}+\frac{3}{2}\)

\(L=\frac{b\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}+\frac{3}{2}=\left(a-c\right)\left(\frac{b}{\left(a+b\right)\left(b+c\right)}-\frac{1}{2\left(a+c\right)}\right)+\frac{3}{2}\)

\(L=\left(a-c\right)\left(\frac{ab+bc-ac-b^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)+\frac{3}{2}=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{2}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi ít nhất 2 trong 3 số bằng nhau

4 tháng 10 2020

Ta có: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2ab+2bc+2ac}\)

Mặt khác : \(a^2+b^2+c^2\ge ab+bc+ac\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)\(\Rightarrow\frac{\left(a+b+c\right)^2}{2ab+2bc+2ac}\ge\frac{3}{2}\)

5 tháng 10 2020

Dự đoán \(MinL=\frac{3}{2}\)khi a = b = c

Ta cần chứng minh \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\Leftrightarrow\frac{a-b}{2\left(a+b\right)}-\frac{\left(a-b\right)+\left(c-a\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}-\frac{a-b}{2\left(b+c\right)}-\frac{c-a}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{a-b}{2}\left(\frac{1}{a+b}-\frac{1}{b+c}\right)-\frac{c-a}{2}\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)\(\Leftrightarrow\frac{a-b}{2}.\frac{c-a}{\left(a+b\right)\left(b+c\right)}-\frac{c-a}{2}.\frac{a-b}{\left(b+c\right)\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{\left(a-b\right)\left(c-a\right)\left(c+a\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}-\frac{\left(a-b\right)\left(c-a\right)\left(a+b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(đúng do \(a\ge b\ge c>0\))

Đẳng thức xảy ra khi a = b = c

24 tháng 12 2019

a) \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )

=>đpcm

25 tháng 12 2019

Cô si

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)

Cộng lại ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)

NV
2 tháng 4 2019

a/ \(a>b\Rightarrow a-b>0\)

\(P=\frac{\left(a-b\right)^2+2ab+1}{a-b}=\frac{\left(a-b\right)^2+9}{a-b}=a-b+\frac{9}{a-b}\)

\(\Rightarrow P\ge2\sqrt{\left(a-b\right)\frac{9}{a-b}}=6\Rightarrow P_{min}=6\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a>b\\ab=4\\\left(a-b\right)^2=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a=-1\\b=-4\end{matrix}\right.\)

b/

\(x\ge3y\Rightarrow\frac{x}{y}\ge3\)

\(A=\frac{4x^2+9y^2}{xy}=4\frac{x}{y}+9\frac{y}{x}=3\frac{x}{y}+\frac{x}{y}+9\frac{y}{x}\)

\(\Rightarrow A\ge3\frac{x}{y}+2\sqrt{\frac{x}{y}.\frac{9y}{x}}\ge3.3+2.3=15\)

\(\Rightarrow A_{min}=15\) khi \(x=3y\)

2 tháng 4 2019

Cám ơn

13 tháng 9 2017

a)Từ \(a+b+c\ge ab+bc+ca\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) *đúng*

Khi \(a=b=c\)

b)Áp dụng BĐT AM-GM ta có: 

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự rồi cộng theo vế :

\(M\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

Khi \(a=b=c=1\)

10 tháng 7 2019

Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:

\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)

Giải phần dấu "=" ra ta được a = b =c

Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)

Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)

Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)

\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)

Bài toán đúng theo kết quả câu 1.

31 tháng 10 2017

a)\(\dfrac{\left(a+b\right)^2}{4}\ge ab\)\(\Leftrightarrow\dfrac{a^2+ab+b^2}{4}\ge0\)\(\Leftrightarrow\dfrac{\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}}{4}\ge0\left(đpcm\right)\)

Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

31 tháng 10 2017

b) Áp dụng Cauchy, ta có:

\(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ca}{b}}=2c\)

Tương tự: \(\dfrac{ca}{b}+\dfrac{ab}{c}\ge2a\)

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)

Cộng vế theo vế các BĐT vừa chứng minh rồi rút gọn ta được đpcm.