Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b-c + b/c-a + c/a-b=0 =>a/b-c=-(b/c-a + c/a-b)=c/a-b - b/c-a =b/a-c + c/b-a = b2-ab+ac-c2/(a-b)(c-a)
Tương tự rồi công lại
Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:
\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)
Giải phần dấu "=" ra ta được a = b =c
Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)
Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)
Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)
\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)
Bài toán đúng theo kết quả câu 1.
Áp dụng BĐT AM-GM,ta có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{abc}{bca}}=3\) (1)
\(\frac{a+b}{b+c}+\frac{b+c}{c+a}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(b+c\right)\left(c+a\right)}}=2\)
\(\Leftrightarrow VP\ge3\) (2). Trừ theo vế (1) và (2),ta được: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{a+b}{b+c}-\frac{b+c}{c+a}-1\ge0\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{c+a}+1^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c
Bài 1:
Cho a,b,c,d là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+1+1\right)\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)
Cần chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=3\) (đúng)
Khi a=b=c
áp dụng bất đẳng thức bu nhi a
ta có \(3\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)
lại có a/b+b/c+c/a \(\ge\)3 (bđt cauchy)
nhân từng vế ta có \(3\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\left(\frac{a}{b}+\frac{b}{a}+\frac{a}{c}\right)\ge3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)
suy ra đpcm
Bài 1 :
Áp dụng BĐT Cô - si cho 3 số không âm
\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{a^3}{b^3}}+1\ge3\sqrt[3]{\sqrt{\frac{a^6}{b^6}}}=\frac{3a}{b}\)
\(\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{b^3}{c^3}}+1\ge3\sqrt[3]{\sqrt{\frac{b^6}{c^6}}}=\frac{3b}{c}\)
\(\sqrt{\frac{c^3}{a^3}}+\sqrt{\frac{c^3}{a^3}}+1\ge3\sqrt[3]{\sqrt{\frac{c^6}{a^6}}}=\frac{3c}{a}\)
Cộng theo vế , ta được :
\(2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
\(\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+3\)
\(\Rightarrow2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
Vậy \(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(đpcm\right)\)
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)