\(\frac{n+1}{2n-1}\)(n thuộc Z)

Tìm n để A có giá trị là 1 số nguyên dương

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

Để A nguyên dương

=> n + 1 \(⋮\)2n - 1

Tiếp theo dễ rồi nhé :)

3 tháng 3 2018
Để A thuộc N* <=> n+1/2n-1 thuộc N* Xét 2A= 2n+2/2n-1 Ta cm 2n+2/2n-1 thuộc N* <=> 2n-1+3/2n-1 thuộc N* <=> 1+ 3/ 2n-1 thuộc N* <=> 2n-1 thuộc Ư(3) Ư(3) = { 1 -1 3 -3 } => 2n-1 thuộc {1 -1 3 - 3 } Sau đó tìm n rồi xét xem với gtri nào của n thì A lớn hơn 0 là xog r đó bạn
2 tháng 4 2017

Để B nguyên thì \(n+5⋮2n+3\)

Ta có \(2n+3⋮2n+3\)

=>\(2.\left(n+5\right)⋮2n+3\)

=>\(2n+10⋮2n+3\)

=>(2n+10)-(2n+3) \(⋮2n+3\)

=>\(7⋮2n+3\)

=> \(2n+3\in\left\{-7;-1;1;7\right\}\)

=> \(n\in\left\{-5;-2;-1;2\right\}\)

Thử lại ta thấy với n=-5 thì B=0, loại

Với n=-2 thì B<0

Còn lại đều cho B là dương

Vậy \(n\in\left\{-1;2\right\}\)

11 tháng 2 2018

a) Ta có: \(A=\frac{2n+1}{2n-1}=\frac{2n-1+2}{2n-1}=\frac{2n-1}{2n-1}+\frac{2}{2n-1}=1+\frac{2}{2n-1}\)

Để A là một phân số \(\Leftrightarrow2n-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)

b) Để A nhận giá trị nguyên \(\Leftrightarrow2⋮\left(2n-1\right)\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Nếu 2n - 1 = 1 => n = 1

Nếu 2n - 1 = -1 => n = 0

Nếu 2n - 1= 2 => n = 3/2

Nếu 2n - 1 = -2 => n = -1/2

Vì \(n\in Z\Rightarrow n=\left\{0;1\right\}\) thì A đạt giá trị nguyên

11 tháng 2 2018

\(\text{a) }ĐKXĐ:2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)

Phản chứng:

\(A=\frac{2n+1}{2n-1}=1+\frac{2}{2n-1}\)(Vậy chúng ta phải chứng minh A là số nguyên)

Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)

+ Với 2n-1 =1 => n=1 => A= 3 ( nên a) ko đúng

b)từ ý a) ta có:

Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)

+ Với 2n-1=-2=> n= -1/2( loại)

+Với 2n-1=-1 => n= 0 ( chọn)

+ Với 2n-1=1=> n= 1 ( chọn)   

+ Với 2n-1 =2 => n=3/2( loại)

vậy......

7 tháng 4 2019

đợi chút nha

7 tháng 4 2019

a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)

Để A nguyên thì 4 phải chia hết cho 2n+1

=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}

Mà 2n + 1 là số lẻ

=> 2n + 1 \(\varepsilon\){-1;1}

=> 2n \(\varepsilon\){-2;0}

=> n \(\varepsilon\){-1;0}

Vậy:...

7 tháng 8 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)

a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3 

<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=>\(2n\in\left\{-8;-4;-2;2\right\}\)

<=>\(n\in\left\{-4;-2;-1;1\right\}\)

b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\)  nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên

<=> 2n+3=-1 <=> n=-2

\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2

phần giá trị nhỏ nhất bạn làm nốt

18 tháng 1 2018

Để \(\frac{4n-1}{2n+3}\)nhận giá trị nguyên thì

\(\Leftrightarrow\)4n-1 chia hết cho 2n+3

Ta có 4n-1=2(n-3)-5 chia hết cho 2n+3

\(\Rightarrow\)2n+3\(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị

2n+3-1-515
2n-2-4-11

Vậy n={-2;-4;-1;1} thì \(\frac{4n-1}{2n+3}\)là số nguyên

19 tháng 1 2018

hơi sai đó bạn ơi