K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

k chép đề

3/2.A=\(\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5+...+\left(\frac{3}{2}\right)^{2013}\)

3/2A-A=(\(\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5+...+\left(\frac{3}{2}\right)^{2013}\)) - (\(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2012}\))

1/2 . A =\(\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}\)

A=\(\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}}{2}\)

B-A=\(\frac{\left(\frac{3}{2}\right)^{2018}}{2}-\)\(\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}}{2}\)

\(B-A=\frac{\frac{1}{2}}{2}=\frac{1}{2}:2=\frac{1}{4}\)

6 tháng 3 2020

à chết  Nguyễn Thị Hiền  ơi câu cuối mik quên mất

B-A=\(\frac{\frac{-1}{2}}{2}\)

B-A=\(\frac{-1}{4}\) nhé

cám ơn đã đọc

5 tháng 3 2020

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}}\)

=> \(3S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{2^{2018}}-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-...-\frac{2019}{4^{2019}}\)

=>3S=\(1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{2^{2018}}-\frac{2019}{4^{2019}}\)

còn lại tự giải nhé  

5 tháng 3 2020

Mình cảm ơn bạn.

13 tháng 4 2018

bn tham khảo link này nha :https://olm.vn/hoi-dap/question/67497.html 

8 tháng 3 2017

TẦM NHƯ HƠI CĂNG

8 tháng 3 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)

\(=\frac{1}{2000}\)

4 tháng 5 2016

=> B=2013. (1+\(\frac{1}{1+2}\) +\(\frac{1}{1+2+3}\) +...+ \(\frac{1}{1+2+3+...+2012}\))

=>B= 2013.(\(\frac{2}{2}\) + \(\frac{2}{2.3}\) +\(\frac{2}{3.4}\) +...+\(\frac{2}{2012.2013}\))

=>B= 2013.2.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +\(\frac{1}{3.4}\) +...+\(\frac{1}{2012.2013}\))

=>B=4026. (1-\(\frac{1}{2}\) +\(\frac{1}{2}\) -\(\frac{1}{3}\) + ...+\(\frac{1}{2012}\) - \(\frac{1}{2013}\))

=>B=4026.(1-\(\frac{1}{2013}\)

=>B=4026.\(\frac{2012}{2013}\) => B=2.2012=4024 Vậy B=4024

18 tháng 6 2018

Ta có \(A=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\)

\(\Rightarrow\frac{3}{2}A=\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+....\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow\frac{3}{2}A-A=\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\)hay \(\frac{1}{2}A=\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\)

Suy ra \(A=2.\text{[}\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\text{]}\)

Khi đó \(B-A=\frac{\left(\frac{3}{2}\right)^{2013}}{2}-2.\text{[}\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\text{]}\)

18 tháng 6 2018

\(A=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\)

\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left[\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right]\)

\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\)

\(\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)

\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)

13 tháng 5 2017

\(A=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2012}\)(1)

\(\frac{3}{2}A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2013}\)(2)

Lấy (2) trừ (1) ta được:

\(\frac{1}{2}A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\)

\(A=\frac{\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}}{\frac{1}{2}}=\left(\frac{3}{2}\right)^{2013}.2-\frac{5}{4}.2=\left(\frac{3}{2}\right)^{2013}.2-\frac{5}{2}\)

\(\Rightarrow B-A=\left(\frac{3}{2}\right)^{2013}\cdot\frac{1}{2}-\left(\frac{3}{2}\right)^{2013}.2+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)

17 tháng 4 2018

kết quả là (3/2)^2014-1

đúng đó