Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{2}{3}\cdot x-\frac{4}{7}=\frac{1}{8}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{1}{8}+\frac{4}{7}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{7}{56}+\frac{32}{56}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{39}{56}\)
\(\Leftrightarrow x=\frac{39}{56}:\frac{2}{3}=\frac{39}{56}\cdot\frac{3}{2}=\frac{39\cdot3}{56\cdot2}=\frac{117}{112}\)
\(b,\frac{2}{7}-\frac{8}{9}\cdot x=\frac{2}{3}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{2}{7}-\frac{2}{3}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{6}{21}-\frac{14}{21}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{-8}{21}\)
\(\Leftrightarrow x=\frac{-8}{21}:\frac{8}{9}=\frac{-8}{21}\cdot\frac{9}{8}=\frac{-8\cdot9}{21\cdot8}=\frac{-1\cdot3}{7\cdot1}=\frac{-3}{7}\)
Làm nốt hai bài cuối đi nhé
Study well >_<
Mk k chép lại đề bài nha
a)\(\frac{2}{3}.x=\frac{1}{8}+\frac{4}{7}\)
\(\frac{2}{3}.x=\frac{7}{56}+\frac{32}{56}\)
\(\frac{2}{3}.x=\frac{39}{56}\)
\(x=\frac{39}{56}:\frac{2}{3}\)
\(x=\frac{39}{56}.\frac{3}{2}\)
\(x=\frac{117}{112}\)
Mk sợ sai lém!!!
Mình nghĩ đề thế này mới tính hợp lí được
2 ) B = \(1\frac{6}{41}.\left(\frac{12+\frac{12}{19}-\frac{12}{37}-\frac{12}{53}}{3+\frac{3}{19}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2006}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2006}}\right).\frac{124242423}{237373735}\)
B = 47/41 . ( 12/3 : 4/5 ) . 123/235
B = 47/41 . ( 4 : 4/5 ) . 123/235
B = 47/41 . 5 . 123/235
B = \(\frac{47.5.123}{41.235}\)
B = 3
1 ) A = \(\frac{636363.37-373737.63}{1+2+3+...+2006}\)
A = \(\frac{63.10101.37-37.10101.63}{1+2+3+...+2006}\)
A = \(\frac{0}{1+2+3+...+2006}\)
A = 0
\(\frac{3}{4}.x-1\frac{1}{2}+x=2,4\)
\(\frac{3}{4}.x-\frac{3}{2}+x=2,4\)
\(\frac{3}{4}.x-1.\frac{3}{2}+x.1=2,4\)
\(x.\left(\frac{3}{4}-\frac{3}{2}+1\right)=2,4\)
\(x.\frac{1}{4}=\frac{24}{10}\)
\(x=\frac{24}{10}:\frac{7}{4}\)
\(x.=\frac{24}{10}.\frac{4}{7}\)
\(x=\frac{48}{35}\)
\(\frac{3}{4}x-1\frac{1}{2}+x=2,4\)
<=>\(\frac{3}{4}x-\frac{3}{2}+x-2,4=0\)
,<=>\(\frac{7}{4}x-3,9=0\)
=>\(\frac{7}{4}x=3,9\)
=>\(x=\frac{78}{35}\)
P/s : nhìn thì khủng thật ! :v
\(B=81.\left[\frac{\left[12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}\right]}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)
\(B=81.\left[\frac{12.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right].\frac{158}{711}\)
\(B=81.\left(\frac{3}{1}:\frac{5}{6}\right).\frac{158}{711}\)
\(B=81.\frac{18}{5}.\frac{158}{711}\)
\(B=\frac{1458}{5}.\frac{158}{711}=\frac{324}{5}\)
Vậy \(B=\frac{324}{5}\)
\(B=70\cdot\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)
\(B=70\cdot\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\right]\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\right]\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\right]\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{10}\right)\right]\)
\(B=70\cdot13\cdot\frac{3}{70}\)
\(B=70\cdot\frac{3}{70}\cdot13\)
\(B=3\cdot13\)
\(B=39\)
a) (-1)^a =1 với a chẵn, (-1)^a =-1 với a lẻ
\(A=\left(-1\right)^{1+2+3+4+..+2010+2011}=\left(-1\right)^{\frac{2011+1}{2}.2011}=\left(-1\right)^{1006.2011}=1\)
Vì 1006 là số chẵn => 1006.2011 là số chẵn
b) \(B=70.\left(\frac{13.10101}{56.10101}+\frac{13.10101}{72.10101}+\frac{13.10101}{90.10101}\right)=70.\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)=3.13=39\)
c) Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
=> C=4
đụ cha mi
mi trù ta thi rớt HK II mà ta giúp mày hả
mấy bài này cũng dễ ẹt nữa
đừng có mơ ta sẽ giúp mày
ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)
\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)
\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)
\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)
\(B=\frac{100\cdot2}{1\cdot101}\)
\(B=\frac{200}{101}\)
\(a)\) \(427-98=329\)
\(b)\) \(2\cdot19\cdot15+3\cdot43\cdot10+62\cdot80\)
\(=\left(2\cdot15\right)\cdot19+\left(3\cdot10\right)\cdot43+62\cdot80\)
\(=30\cdot19+30\cdot43+62\cdot80\)
\(=30\cdot\left(19+43\right)+62\cdot80\)
\(=30\cdot62+62\cdot80\)
\(=62\cdot\left(30+80\right)\)
\(=62\cdot110=6820\)
\(c)\) Đặt \(M=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\right)\)
\(\Rightarrow2M=1-\frac{1}{3^6}\)
\(\Rightarrow M=\frac{728}{2\cdot729}=\frac{364}{729}\)
Vậy \(M=\frac{364}{729}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)