Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 1/2 + 1/3 + ... + 1/62 + 1/63 + 1/64
= 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + ... + 1/16) + (1/17 + 1/18 + ... + 1/32) + (1/33 + 1/34 + ... + 1/64)
> 1 + 1/2 + 1/4 × 2 + 1/8 × 4 + 1/16 × 8 + 1/32 × 16 + 1/64 × 32
> 1 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2
> 1 + 1/2 × 6
> 1 + 3
> 4
1 + 1/2 + 1/3 + ... + 1/62 + 1/63 + 1/64
= 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + ... + 1/16) + (1/17 + 1/18 + ... + 1/32) + (1/33 + 1/34 + ... + 1/64)
> 1 + 1/2 + 1/4 × 2 + 1/8 × 4 + 1/16 × 8 + 1/32 × 16 + 1/64 × 32
> 1 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2
> 1 + 1/2 × 6
> 1 + 3
> 4
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế theo vế
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có \(\frac{7}{8}< 1\)
Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
Ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2014^2}\)
\(< \frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{2013\cdot2014}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{2013}-\frac{1}{2014}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2014}\)
\(=\frac{3}{4}-\frac{1}{2014}\)
\(< \frac{3}{4}\)
1/2+1/3+1/4+...+1/63>1/31+ 1/31+...+1/31(62 số hang 1/31)
hay 1/2+1/3+1/4+...+1/63 > 62*1/31
nên 1/2+1/3+1/4+...+1/63>2 (dpcm)
BÀI 1:
\(P=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2^{100}-1}\)
\(\Leftrightarrow A=1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}-\frac{1}{2^{100}}\)
\(\Leftrightarrow A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+........+\left(\frac{1}{2^{99}+1}+.......+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
\(\Leftrightarrow A>1+\frac{1}{2}+\frac{1}{2^2}\cdot2+\frac{1}{2^3}\cdot2^2+........+\frac{1}{2^{100}}\cdot2^{99}-\frac{1}{2^{100}}\)
\(\Leftrightarrow A>1+\frac{1}{2}\cdot100-\frac{1}{2^{100}}\)
\(\Leftrightarrow A>51-\frac{1}{2^{100}}>51-1=50\)
\(\Rightarrow DPCM\)
BÀI 2 :
TA CÓ: \(A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{100}}\)VÀ \(B=2\)
= > CẦN CHỨNG MINH \(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)NHƯ THẾ NÀO SO VỚI 1
ĐẶT \(C=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)
\(\Leftrightarrow2C=1+\frac{1}{2}+.......+\frac{1}{2^{99}}\)
\(\Leftrightarrow2C-C=\left(1+\frac{1}{2}+.....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+.....+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow C=1-\frac{1}{2^{100}}>1\)
\(\Rightarrow A>B\)
Ta có 1/3+1/4>1/4+1/4=1/2
Suy ra , 1/2+1/3+1/4>1
* 1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=4/8=1/2 (1)
*1/9+1/10+1/11+...+1/17>1/17+1/17+1/17+...+1/17(9 p/s1/7)=9/17 >8.5/17=1/2 (2)
Từ (1) và (2) , suy ra : 1/5+1/6+1/7+...+1/17 > 1/2+1/2 = 1
Vậy: 1/2+1/3+1/4+...+1/17 > 2
Mà 2 < 1/2+1/3+1/4+...+1/17 < 1/2+1/3+1/4+...+1/63
Suy ra : 1/2+1/3+1/4+...+1/63 > 2 ( ĐPCM )