\(\frac{1}{2}\)+\(\frac{1}{3}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

BÀI 1:

\(P=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2^{100}-1}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+........+\left(\frac{1}{2^{99}+1}+.......+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}+\frac{1}{2^2}\cdot2+\frac{1}{2^3}\cdot2^2+........+\frac{1}{2^{100}}\cdot2^{99}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}\cdot100-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>51-\frac{1}{2^{100}}>51-1=50\)

\(\Rightarrow DPCM\)

BÀI 2 :

TA CÓ: \(A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{100}}\)VÀ \(B=2\)

= > CẦN CHỨNG MINH \(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)NHƯ THẾ NÀO SO VỚI 1

ĐẶT \(C=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)

\(\Leftrightarrow2C=1+\frac{1}{2}+.......+\frac{1}{2^{99}}\)

\(\Leftrightarrow2C-C=\left(1+\frac{1}{2}+.....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+.....+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow C=1-\frac{1}{2^{100}}>1\)

\(\Rightarrow A>B\)

23 tháng 4 2017

Ai trả lời giúp mik nha

4 tháng 4 2018

\(a)\) Ta có : 

\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)

\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)

Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)

Do đó : 

\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

2 tháng 4 2019

Mình còn chưa học lớp 6 huhu

2 tháng 4 2019

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}< 1\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}< 1\)

\(S=1-\frac{1}{50}< 1\)

\(S=\frac{49}{50}< 1\left(đpcm\right)\)

17 tháng 4 2017

Làm bài hình thôi nhé.

Hình b tự vẽ.

a/ Ta có: góc xOy + góc yOz = 180 độ (kề bù)

         => 120         + góc yOz = 180

        => góc yOz = 180 - 120 = 60 độ

b/ Vì Om là pgiác góc yOz => góc yOm = góc zOm = góc yOz : 2 = 60 : 2 = 30 độ

Ta có: góc xOm = góc xOy + góc yOm = 120 + 30 = 150 độ

17 tháng 4 2017

hức gần thi r nên hỏi nhiều qué

19 tháng 5 2019

\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(N< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(N< 1-\frac{1}{100}\)

\(N< \frac{99}{100}< \frac{75}{100}=\frac{3}{4}\)

19 tháng 5 2019

\(a,\)

Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)

b, Ta có :

\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

Mà \(3⋮n+2\Rightarrow n+2\inƯ(3)=\left\{\pm1;\pm3\right\}\)

Tự xét bảng

Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)Hãy so sánh S và \(\frac{1}{2}\)Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)Bài 4: Cho tổng...
Đọc tiếp

Bài 1: Cho A= \(\frac{2011}{2012}\)\(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)

Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)

Hãy so sánh S và \(\frac{1}{2}\)

Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)

S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)

Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

Chứng tỏ rằng A>1

Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Bài 6: Chứng tỏ rằng

D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1

Bài 7: 

C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)

Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm

4
10 tháng 6 2016

sorry,quá dài

10 tháng 6 2016

Đề bài 7 có sai gì không bạn?