Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(S=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\\\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\\\dfrac{b}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{ba}}=2\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge2+2+2=6\)
\(\Leftrightarrow\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)
\(\Leftrightarrow S\ge6\) ( đpcm )
\(\Rightarrow S_{min}=6\)
Dấu " = " xảy ra khi \(a=b=c\)
cách 1 sử dụng BĐT
a)
\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}=\left(\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\right)\)đã áp cô_si --> áp tới bến luôn
\(S=\left(\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\right)\ge6\sqrt[6]{\dfrac{\left(abc\right)^2}{\left(abc\right)^2}}=6\) =>dpcm
b) min S=6
khi \(\dfrac{a}{b}=\dfrac{b}{a}=\dfrac{c}{a}=\dfrac{a}{c}=\dfrac{b}{c}=\dfrac{c}{b}\Rightarrow a=b=c\)
cách2sử dụng HĐT \(\left(x-y\right)^2\ge0\forall x,y\)
\(S=\left(\dfrac{a}{b}-2+\dfrac{b}{a}\right)+\left(\dfrac{c}{b}-2+\dfrac{b}{c}\right)+\left(\dfrac{a}{c}-2+\dfrac{c}{a}\right)+6\)
\(S=\left(\sqrt{\dfrac{c}{b}}-\sqrt{\dfrac{b}{c}}\right)^2+\left(\sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}}\right)^2+\left(\sqrt{\dfrac{a}{c}}-\sqrt{\dfrac{c}{a}}\right)^2+6\ge6\)=> dpcm
Min S=6
khi \(\left\{{}\begin{matrix}\left(\sqrt{\dfrac{c}{b}}-\sqrt{\dfrac{b}{c}}\right)=0\\\left(\sqrt{\dfrac{c}{b}}-\sqrt{\dfrac{b}{c}}\right)=0\\\left(\sqrt{\dfrac{c}{b}}-\sqrt{\dfrac{b}{c}}\right)=0\end{matrix}\right.\)\(\Rightarrow a=b=c\)
Xét hiệu \(S_1-S_2=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}\)
\(=\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{\left(b-c\right)\left(b+c\right)}{b+c}+\frac{\left(c-a\right)\left(c+a\right)}{c+a}\)
\(=a-b+b-c+c-a\)
\(=0\)
\(\Rightarrow S_1=S_2\)
+) Áp dụng bđt AM-GM ta có:
\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)
\(\frac{b^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{b^2}{b+c}.\frac{b+c}{4}}=b\)
\(\frac{c^2}{c+a}+\frac{c+a}{4}\ge2\sqrt{\frac{c^2}{c+a}.\frac{c+a}{4}}=c\)
Cộng theo vế các đẳng thức trên ta được:
\(S_1+\frac{a+b+c}{2}\ge a+b+c\)
\(\Rightarrow S_1\ge\frac{a+b+c}{2}\left(đpcm\right)\)
Ta có: \(S^2=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+2\frac{a\sqrt{b}}{\sqrt{c}}+2\frac{b\sqrt{c}}{\sqrt{a}}+2\frac{c\sqrt{a}}{\sqrt{b}}\)
Áp dụng BĐT Cosi cho 3 số dương ta được
\(\hept{\begin{cases}\frac{a^2}{b}+\frac{a\sqrt{b}}{\sqrt{c}}+\frac{a\sqrt{b}}{\sqrt{c}}+c\ge4a\left(1\right)\\\frac{b^2}{c}+\frac{b\sqrt{c}}{\sqrt{a}}+\frac{b\sqrt{c}}{a}+a\ge4b\left(2\right)\\\frac{c^2}{a}+\frac{c\sqrt{a}}{\sqrt{b}}+\frac{c\sqrt{a}}{\sqrt{b}}+b\ge4c\left(3\right)\end{cases}}\)
Cộng theo từng vế của (1) (2) (3)
=> \(S^2\ge3\left(a+b+c\right)\ge9\Rightarrow A\ge3\)
=> MinS=3 đạt được khi a=b=c=1
Diện tích hình chữ nhật là 5,8 mét vuông chiều dài là là 7,8 m tính chu vi hình chữ nhật
\(A=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a+c}{a+c}+\frac{a+b}{a+b}\right)\)
\(\Rightarrow S=2007.\frac{1}{90}-3=\frac{2007-270}{90}\)
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{ac}{ca}}=2\\\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{bc}{cb}}=2\\\frac{b}{a}+\frac{a}{b}\ge2\sqrt{\frac{ab}{ba}}=2\end{cases}}\)
\(\Rightarrow\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\ge2+2+2=6\)
\(\Leftrightarrow\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
\(\Leftrightarrow S\ge6\left(đpcm\right)\)
\(\Rightarrow S_{min}=6\)
Dấu " = " xảy ra khi \(a=b=c\)
Chúc bạn học tốt !!!