Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(B=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Ta cần CM \(\frac{a}{b}+\frac{b}{a}\ge2\)
Áp dụng BĐT Cô-si:\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Tương tự,ta cũng có:\(\frac{b}{c}+\frac{c}{b}\ge2;\frac{a}{c}+\frac{c}{a}\ge2\)
\(\Rightarrow B\ge2+2+2=6\left(đpcm\right)\)
(*) t chỉ ms lớp 7 thôi nên cũng ko chắc đúng ko nhé!
\(B=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}=\frac{a}{c}+\frac{c}{a}+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}\ge2+2+2=6 \)
\(A=1+\frac{a}{b}+1+\frac{b}{a}=2+\frac{a}{b}+\frac{b}{a}\ge2+2=4\)
Bài 2:
A = (a+b)(1/a+1/b)
Có: \(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)
=> ĐPCM
1.b)
Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}
Ta có: \(A=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=a\left(\frac{1}{a}+\frac{1}{b}\right)+b\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{a}{b}+1+\frac{b}{a}\)
=> \(A=2+\frac{a}{b}+\frac{b}{a}\)
Ta lại có: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
=> \(A=2+\frac{a}{b}+\frac{b}{a}\ge2+2=4\)
=> \(A\ge4\) => đpcm
Xét A , ta thấy
\(A=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=a\left(\frac{1}{a}+\frac{1}{b}\right)+b\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(A=1+\frac{a}{b}+1+\frac{b}{a}=2+\frac{a}{b}+\frac{b}{a}\)
Áp dụng bất đẳng thức trung bình cộng , trung bình nhân , ta có :
\(\frac{a}{b}+\frac{b}{a}\ge2.\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
\(\Rightarrow A=2+\frac{a}{b}+\frac{b}{a}\ge2+2=4\)
2) a) Không mất tính tổng quát, ta giả sử \(a\ge b\ge c>0\).Suy ra \(a+b\ge a+c\ge b+c\)
Ta có : \(\frac{b}{c+a}< \frac{b}{b+c}\); \(\frac{c}{a+b}< \frac{c}{b+c}\); \(\frac{a}{b+c}< 1\)
\(\Rightarrow\frac{b}{c+a}+\frac{c}{a+b}+\frac{a}{b+c}< \frac{b+c}{b+c}+1=2\)
b) Đặt \(x=b+c-a\); \(y=c+a-b\); \(z=a+b-c\);
Khi đó : \(2a=y+z\Rightarrow a=\frac{y+z}{2}\). \(b=\frac{x+z}{2}\); \(c=\frac{x+y}{2}\)
\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\)
Mặt khác ta có : \(\frac{x}{y}+\frac{y}{x}\ge2\); \(\frac{y}{z}+\frac{z}{y}\ge2\); \(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\ge\frac{1}{2}\left(2+2+2\right)\)
hay \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)(đpcm)
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Bạn tham khảo:
https://hoc24.vn/hoi-dap/question/862431.html
a, Ta cần phải chứng minh (a+b)(\(\frac{1}{a}+\frac{1}{b}\))=1+\(\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\ge4\) vì
\(\frac{a}{b}+\frac{b}{a}\ge2\)(cái này bạn tìm hiểu kĩ hơn nha,nhưng mk nghĩ thế này đc rồi đó)
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b.
d,(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))=1+\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
=3+(\(\frac{a}{b}+\frac{b}{a}\))+(\(\frac{a}{c}+\frac{c}{a}\))+(\(\frac{c}{b}+\frac{b}{c}\))\(\ge\)3+2+2+2=9
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b=c
e,Xét hiệu :
\(^{a^3+b^3+c^3-3abc=\left(a^2+b^2+c^2-ab-ac-bc\right)\left(a+b+c\right)}\) => cái này bạn nhân ra trước rồi phân tích đa thức thành nhân tử nha.
=\(\left(a+b+c\right)\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) \(\Rightarrow\)ĐPCM
Diện tích hình chữ nhật là 5,8 mét vuông chiều dài là là 7,8 m tính chu vi hình chữ nhật
\(A=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)