Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=26.31=806\)
\(\Rightarrow1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1=806\)
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{a}=803\)
Ta có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Thay vào biểu thức M ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2: Nếu \(a+b+c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Thay vào biểu thức M ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{8abc}{abc}=8\)
Vậy \(M=-1\)hoặc \(M=8\)
Ta có
a + b + c = abc
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Ta lại có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Ta có:a+b+c=abc
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Ta lại có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)
=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)
=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)
=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)
Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)
=> (1) đúng
=> BĐTđược chứng minh
b)Đặt \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).
\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).
Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).
Chứng minh tương tự, ta được:
\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).
Chứng minh tương tự, ta được:
\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).
\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).
\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).
Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).
\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).
\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).
\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(A\ge\frac{15}{2}\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).
Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a+c}{a+c}+\frac{a+b}{a+b}\right)\)
\(\Rightarrow S=2007.\frac{1}{90}-3=\frac{2007-270}{90}\)