Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì a là số nguyên dương nên a, (a–1) là hai số tự nhiên liên tiếp
⇒a−1⋮2
Tương tự ta có \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2
=> \(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn
Lại có \(a^2+b^2=c^2+d^2\)\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)\)là số chẵn.
Do đó \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\in\) N*)
⇒ \(a+b+c+d\) là hợp số
Tick nha kkk 😘
I don't now
or no I don't
..................
sorry
1a) \(A+B+C\)
\(=\left(x-y\right)^2+4xy-\left(x+y\right)^2\)
\(=\left(x^2-2xy+y^2\right)+4xy-\left(x^2+2xy+y^2\right)\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(4xy-2xy-2xy\right)=0\left(đpcm\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{a+d}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{a+b+b+c+c+d+d+a}\)
\(=\dfrac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}=\dfrac{a+b+c+d}{2}=\dfrac{1}{2}=VP\)
Đẳng thức xảy ra khi \(a=b=c=d=\dfrac{1}{4}\)
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Cho a,b,c,d là các số dương thỏa mãn a^2 + b^2=1 và a^4/c+b^4/d=1/c+d.Chứng minh rằng:a^2/c+d/b^2>=2