Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}AE=FC\\AE//FC\left(AB//CD\right)\end{matrix}\right.\Rightarrow AECF\) là hbh
\(b,AE=CF\left(gt\right);AB=CD\left(hbh.ABCD\right)\\ \Rightarrow AB-AE=CD-CF\\ \Rightarrow BE=FD\)
\(c,\left\{{}\begin{matrix}BE=FD\left(cm.trên\right)\\BE//FD\left(AB//CD\right)\end{matrix}\right.\Rightarrow DEBF\) là hbh
\(d,\) Gọi M là giao AC và BD
Mà ABCD là hbh nên M là trung điểm AC,BD
Mà DEBF là hbh, M là trung điểm BD nên cũng là trung điểm EF
Do đó AC,BD,EF đồng quy tại M
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
1) Vì ABCD là hình bình hành nên AB//CD hay AE//CF
Xét tứ giác AECF có AE//CF, AE=CF
=> AECF là hình bình hành
2) Vì AbCDlà hình bình hành nên O là trung điểm của AC (1)
Mà AECF là hình bình hành có 2 đường chéo AC và EF cắt nhau tại O (2)
Suy ra O là trung điểm của EF
Bạn tự vẽ hình nha .
7.1
Ta có : T/g ABCD là hbh
Suy ra : AB = CD
Mà E là trung điểm của AB ; F là trung điểm của CD.
Suy ra : AE=BE=DF=CF
Xét t/g AECF có : AE = CF ( cmt )
AE // CF ( AB //CD )
Suy ra : t/g AECF là hbh. ( đpcm )
7.2
Từ gt : t/g ABCD là hình bình hành
Suy ra : AC ; BD đồng quy tại trung điểm của AC hoặc trung điểm của BD (1)
Từ 7.1 : suy ra : AC và EF đồng quy tại trung điểm của mỗi đường (2)
Từ (1) và (2) : Suy ra : AC;BD;EF đồng quy tại trung điểm của AC; BD hoặc EF.
7.1
Vì ABCD là hình bình hành -> AB = CD -> AE = FC
Tứ giác AEFC có AE song song FC, AE = FC
-> AECF là hình bình hành
7.2
Gọi AC∩BD tại O
Ta có tứ giác ABCD là hình bình hành, hai đường chéo hình bình hành cắt nhau tại trung điểm mỗi đường
⇒O là trung điểm của AC và BD
Mà tứ giác DEBF là hình bình hành nên O là trung điểm của BD thì O cũng là trung điểm của EF
⇒AC;BD;EF cùng đồng quy tại O.
a. Vì ABCD là hbh nên AB//CD hay AE//CF
Mà AE=CF nên AECF là hbh
b. Gọi M là giao AC và BD
Vì ABCD là hbh nên M là trung điểm AC và BD
Vì AECF là hbh mà M là trung điểm AC nên M là trung điểm EF
Vậy AC,BD,EF đồng quy tại M
Ta có:
tam giác AEB = tam giác CFD
=> \(\widehat{AEB}=\widehat{CFD}=\widehat{EDF}\left(slt\right)\)
mà 2 goác có vị trí đồng vị
=> EB//DF
Mặt khác: ED//BF
=> EBFD là h.b.h
Ta có:
Tam giác END= tam giác FMB
=> DN=BM
=> DN+MN=BM+MN=BN
Ta có:
Vì tứ giác ABCD và EBFC đều là h.b.h
=> AC, BD, EF đồng quy tại trung điểm của EF
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Ta có: AE+BE=AB
FC+FD=CD
mà AB=CD
và AE=CF
nên BE=FD