K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AECF có

AE//CF

AE=CF

=>AECF là hình bình hành

b: BE+AE=BA

CF+FD=CD

mà AE=CF và AB=CD

nên BE=DF

Xét tứ giác BEDF có

BE//DF

BE=DF

=>BEDF là hbh

=>BF//DE

c: ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(1)

AECF là hbh

=>AC cắt EF tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

16 tháng 11 2021

a: Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

17 tháng 11 2021

a. Vì ABCD là hbh nên AB//CD hay AE//CF

Mà AE=CF nên AECF là hbh

b. Gọi M là giao AC và BD

Vì ABCD là hbh nên M là trung điểm AC và BD

Vì AECF là hbh mà M là trung điểm AC nên M là trung điểm EF

Vậy AC,BD,EF đồng quy tại M

a: AE\(\perp\)BD

CF\(\perp\)BD

Do đó: AE//CF

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

=>AE=CF

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: AE//CF

E\(\in\)AH

F\(\in\)CK

Do đó: AH//CK

AB//CD

K\(\in\)AB

H\(\in\)CD

Do đó: AK//CH

Xét tứ giác AHCK có

AH//CK

AK//CH

Do đó: AHCK là hình bình hành

=>AC cắt HK tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,HK,BD đồng quy