K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2020

Với \(a,b,c>0\)ta có: \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}=\frac{\sqrt{a^2}}{\sqrt{a\left(b+c\right)}}=\frac{a}{\sqrt{a\left(b+c\right)}}\)

Vì \(a,b,c>0\)\(\Rightarrow\)Áp dụng BĐT Cô-si ta có:

\(\sqrt{a\left(b+c\right)}\le\frac{a+\left(b+c\right)}{2}\)

\(\Rightarrow\frac{1}{\sqrt{a\left(b+c\right)}}\ge\frac{2}{a+b+c}\)\(\Rightarrow\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Tương tự ta có: \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Vì dấu " = " không đồng thời xảy ra ở 3 BĐT 

\(\Rightarrow\)Cộng các vế tương ứng của 3 BĐT lại với nhau ta được:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

                                                                               \(=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)( đpcm )

27 tháng 11 2017

Áp dụng bất đẳng thức AM-GM vào biều thức trên, ta có:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\sqrt[3]{\frac{\left(abc\right)^3}{abc}}=3\sqrt[3]{\left(abc\right)^2}\) (1)

\(a\sqrt{ac}+b\sqrt{ab}+c\sqrt{bc}\ge3\sqrt[3]{abc\sqrt{\left(abc\right)^2}}=3\sqrt[3]{\left(abc\right)^2}\) (2)

Từ (1) và (2) suy ra ĐPCM

2 tháng 2 2018

Ta dự đoán :\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)

Thật vậy ta sẽ chứng minh nó:

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\ge a\left(a^3+\left(b+c\right)^3\right).\)

\(\Leftrightarrow2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a\left(b+c\right)^3\left(#\right)\)

Ta có:\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{1}{4}\left(b+c\right)^4\ge a\left(b+c\right)^3\)

Từ đó , ta có bất đẳng thức \(\left(#\right).\)

Tương tự:

\(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}.\)

Cộng bất đẳng thức trên lại ta có điểu phải chứng minh.

Dấu bằng xảy ra khi \(a=b=c\)

19 tháng 5 2016

Bất đẳng thức tương đương với

\(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c\ge\frac{\left(a+b+c\right)^2}{2\sqrt{3\left(ab+bc+ca\right)}}+a+b+c\)

\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\sqrt{3\left(ab+bc+ca\right)}}+a+b+c\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{a+b+c}{2\sqrt{3\left(ab+bc+ca\right)}}+1\left(1\right)\)

Áp dụng BĐT Bunhiacopxki ta có:

\(\left[\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right]\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Ta chứng minh \(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{a+b+c}{2\sqrt{3\left(ab+bc+ca\right)}}+1\left(2\right)\)

Đặt \(t=\frac{a+b+c}{\sqrt{3\left(ab+bc+ca\right)}}>0\),từ BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Ta được \(t^2\ge0\Rightarrow t>1\).BĐT (2) viết lại thành 

\(\frac{3t^2}{2}\ge\frac{t}{2}+1\Leftrightarrow\left(t-1\right)\left(3t+2\right)\ge0\) luôn đúng

=>(2) được chứng minh

Từ (1) và (2) => điều phải chứng minh

Đẳng thức xảy ra khi và chỉ khi a=b=c

19 tháng 5 2016

áp dụng BĐT bunhiacopxki

NV
20 tháng 2 2020

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}\le\sqrt{2\left(\frac{2}{a}+\frac{2}{b}\right)}=2\sqrt{\frac{a+b}{ab}}\)

Tương tự: \(\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le2\sqrt{\frac{b+c}{bc}}\) ; \(\sqrt{\frac{2}{c}}+\sqrt{\frac{2}{a}}\le2\sqrt{\frac{c+a}{ca}}\)

Cộng vế với vế ta sẽ có điều phải chứng minh

13 tháng 12 2020

hello nha

13 tháng 12 2020

2k? vậy ạ

25 tháng 10 2016

Không làm mất tính tổng quát của bài toán, giả sử \(a\ge b\ge c\)(1)

Có \(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}=\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

Từ (1) => \(\hept{\begin{cases}\frac{2}{a}\le\frac{1}{a}+\frac{1}{b}\\\frac{2}{b}\le\frac{1}{b}+\frac{1}{c}\\\frac{2}{c}\le\frac{1}{a}+\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{\frac{2}{a}}\le\sqrt{\frac{1}{a}+\frac{1}{b}}\\\sqrt{\frac{2}{b}}\le\sqrt{\frac{1}{b}+\frac{1}{c}}\\\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{a}+\frac{1}{c}}\end{cases}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{1}{b}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{a}}+\sqrt{\frac{1}{c}+\frac{1}{b}}\)

=>\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{a+c}{ac}}+\sqrt{\frac{b+c}{bc}}\)

Ta có đpcm