\(a+b+c+ab+bc+ac=1\) 

Tìm giá trị nhỏ nhất của \(A=\frac{a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

a)  ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)

tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)

=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)

mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)

cộng từng vế ta có \(S\ge9\)

dấu = xảy ra <=> a=b=c=1/2

câu 2 tương tự

22 tháng 9 2017

chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin

27 tháng 9 2020

Theo Svac - xơ có :

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\)

Khi đó \(P\ge\frac{9}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\)

\(=\left(\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\right)+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{a^2+b^2+c^2+2.\left(ab+bc+ca\right)}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)

\(=\frac{9}{\left(a+b+c\right)^2}+\frac{21}{\left(a+b+c\right)^2}=\frac{30}{\left(a+b+c\right)^2}=\frac{10}{3}\)

Dấu "=: xảy ra khi \(a=b=c=1\)

Vậy \(P_{min}=\frac{10}{3}\) khi \(a=b=c=1\)

3 tháng 4 2017

Do a, b, c dương áp dụng bất đẳng thức Cô-si ta có:

\(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2\sqrt{\frac{b^2c^2}{a^2}.\frac{a^2c^2}{b^2}}=2c^2\)(1)

Tương tự \(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\) (2)  và \(\frac{b^2c^2}{a^2}+\frac{a^2b^2}{c^2}\ge2b^2\) (3)

Cộng (1), (2), (3) vế theo vế rồi chia 2 vế cho 2 ta được \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge a^2+b^2+c^2=1\)

Ta có \(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(\frac{bc}{a}.\frac{ac}{b}+\frac{ac}{b}.\frac{ab}{c}+\frac{bc}{a}.\frac{ab}{c}\right)\)

\(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(a^2+b^2+c^2\right)=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\ge1+2=3\)

Vậy \(P_{min}=\sqrt{3}\) \(\Leftrightarrow\) \(a=b=c=\frac{\sqrt{3}}{3}\)

3 tháng 4 2017

Kamishamunita

22 tháng 8 2015

Ta sử dụng bất đẳng thức quen thuộc \(\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\leftrightarrow\left(x-y\right)^2\ge0.\)

Xét biểu thức \(Q=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\to P-Q=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0.\)  Vậy \(P=Q\)  . Mặt khác,\(2P=P+Q=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\cdot2013\cdot\sqrt{3}\)

Do đó \(P\ge2013\cdot\sqrt{3}.\) Dấu bằng xảy ra khi \(a=b=c=2013\sqrt{3}.\)

NV
9 tháng 3 2020

\(P=\sum\frac{1}{\sqrt{a^2+b^2-ab+b^2+b^2+1}}\le\sum\frac{1}{\sqrt{ab+b^2+2b}}=\sum\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)

\(\Rightarrow P\le\sum\left(\frac{1}{4b}+\frac{1}{a+b+1+1}\right)\le\sum\left(\frac{1}{4b}+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+1+1\right)\right)\)

\(\Rightarrow P\le\frac{3}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{8}\le\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

2.

\(1\ge\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+a+b+c}\)

\(\Rightarrow a+b+c+3\ge6\Rightarrow a+b+c\ge6\)

\(P=\sum\frac{a^3}{a^2+ab+b^2}=\sum\left(a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\right)\ge\sum\left(a-\frac{ab\left(a+b\right)}{3ab}\right)\)

\(\Rightarrow P\ge\sum\left(\frac{2a}{3}-\frac{b}{3}\right)=\frac{1}{3}\left(a+b+c\right)\ge\frac{6}{3}=2\)

Dấu "=" xảy ra khi \(a=b=c=2\)

10 tháng 3 2020

Ta có : \(ab\le\frac{a^2+b^2}{2}\)

\(\Rightarrow a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có : \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}b^2+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

\(\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó :

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu " = " xay ra khi a=b=c=1

Vậy \(P_{Max}=\frac{3}{2}\) khi a=b=c=1

7 tháng 11 2017

GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)

Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1

\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà  (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)

2 tháng 6 2020

Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)

Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3 

Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)

\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)

\(=\sqrt{3}\text{​​}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)