\(\frac{a^2+b^2}{ab}+\frac{a^2+c^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

Theo Svac - xơ có :

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\)

Khi đó \(P\ge\frac{9}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\)

\(=\left(\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\right)+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{a^2+b^2+c^2+2.\left(ab+bc+ca\right)}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)

\(=\frac{9}{\left(a+b+c\right)^2}+\frac{21}{\left(a+b+c\right)^2}=\frac{30}{\left(a+b+c\right)^2}=\frac{10}{3}\)

Dấu "=: xảy ra khi \(a=b=c=1\)

Vậy \(P_{min}=\frac{10}{3}\) khi \(a=b=c=1\)

23 tháng 8 2020

Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)  (áp dụng Bất Đẳng Thức Cosi)

\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)

\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)

Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)

Dấu "=" xảy ra khi a=b=c

3 tháng 4 2017

Do a, b, c dương áp dụng bất đẳng thức Cô-si ta có:

\(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2\sqrt{\frac{b^2c^2}{a^2}.\frac{a^2c^2}{b^2}}=2c^2\)(1)

Tương tự \(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\) (2)  và \(\frac{b^2c^2}{a^2}+\frac{a^2b^2}{c^2}\ge2b^2\) (3)

Cộng (1), (2), (3) vế theo vế rồi chia 2 vế cho 2 ta được \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge a^2+b^2+c^2=1\)

Ta có \(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(\frac{bc}{a}.\frac{ac}{b}+\frac{ac}{b}.\frac{ab}{c}+\frac{bc}{a}.\frac{ab}{c}\right)\)

\(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(a^2+b^2+c^2\right)=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\ge1+2=3\)

Vậy \(P_{min}=\sqrt{3}\) \(\Leftrightarrow\) \(a=b=c=\frac{\sqrt{3}}{3}\)

3 tháng 4 2017

Kamishamunita

20 tháng 5 2020

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)

thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)

Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)

Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)

22 tháng 8 2015

Ta sử dụng bất đẳng thức quen thuộc \(\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\leftrightarrow\left(x-y\right)^2\ge0.\)

Xét biểu thức \(Q=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\to P-Q=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0.\)  Vậy \(P=Q\)  . Mặt khác,\(2P=P+Q=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\cdot2013\cdot\sqrt{3}\)

Do đó \(P\ge2013\cdot\sqrt{3}.\) Dấu bằng xảy ra khi \(a=b=c=2013\sqrt{3}.\)

7 tháng 11 2017

GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)

Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1

\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà  (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)

2 tháng 6 2020

Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)

Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3 

Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)

\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)

\(=\sqrt{3}\text{​​}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)

15 tháng 4 2019

\(P=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a^2+b^2+c^2}\)

\(P=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{9-2\left(ab+bc+ca\right)}\)

\(P=\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}+\frac{1}{9-2\left(ab+bc+ca\right)}+\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(P\ge\frac{16}{3ab+3bc+3ca+9-2\left(ab+bc+ca\right)}+\frac{2}{3}\left(\frac{9}{ab+bc+ca}\right)\)

\(P\ge\frac{16}{9+ab+bc+ca}+\frac{6}{ab+bc+ca}\)

Sử dụng đánh giá quen thuộc:\(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)

\(\Rightarrow ab+bc+ca\le3\)

\(\Rightarrow P\ge\frac{16}{9+3}+\frac{6}{3}=2+\frac{4}{3}=\frac{10}{3}\)

"="<=>a=b=c=1

28 tháng 11 2019

Trước tiên ta cần chứng minh :

\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Trong 3 số : \(\hept{\begin{cases}a-1\\b-1\\c-1\end{cases}}\) sẽ có ít nhất 2 số cùng dấu 

Giả sử hai số đó là : \(a-1,b-1\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow2abc\ge2\left(ac+bc-c\right)\)

Giờ ta cần chứng minh : \(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow b^2-2ab+a^2+c^2-2c+1\ge0\)

\(\Leftrightarrow\left(b-a\right)^2+\left(c-1\right)^2\ge0\) ( đúng )

\(\Rightarrow\) ta có đpcm 

Quay lại bài toán ban đầu ta có :

\(P=a^2+b^2+c^2+2abc+\frac{18}{ab+bc+ac}\ge2\left(ab+bc+ca\right)-1+\frac{18}{ab+bc+ca}\)

\(\ge2.2.3\sqrt{\frac{ab+bc+ca}{ab+bc+ca}}-1=11\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

28 tháng 11 2019

Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\)

Ta có BĐT quen thuộc sau: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Có: \(VT-VP=\left(\sqrt{a}-\sqrt{b}\right)^2\left(a+b+2\sqrt{ab}-2c\right)+\left(c-1\right)^2+2c\left(\sqrt{ab}-1\right)^2\ge0\)(vì \(c=min\left\{a,b,c\right\}\)

Từ đó \(P\ge2\left(ab+bc+ca\right)+\frac{18}{ab+bc+ca}-1\)

\(\ge2\sqrt{2\left(ab+bc+ca\right).\frac{18}{ab+bc+ca}}-1=11\)

Đẳng thức xảy ra khi a = b = c =  1