Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề: Cho \(a+b+c=1\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Chứng minh: \(a^2+b^2+c^2=1\)
-----------------------------------------
Từ \(a+b+c=1\)
\(\Rightarrow\) \(\left(a+b+c\right)^2=1\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\) \(\left(1\right)\)
Mặt khác, ta lại có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) \(\Leftrightarrow\) \(\frac{ab+bc+ca}{abc}=0\) \(\Leftrightarrow\) \(ab+bc+ca=0\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\), suy ra \(a^2+b^2+c^2=1\) \(\left(đpcm\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=1\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=1\)
\(\Leftrightarrow a^2+b^2+c^2=1\)
Ta biến đổi 1 tí nhé
\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)
\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)
\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)
\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)
Cộng vế với vế của (1), (2), (3) suy ra
\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
\(\Leftrightarrow Dpcm\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\Leftrightarrow a^2+b^2+c^2+2.0=1\)
=> dpcm
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)
\(\Rightarrow2\left(ab+bc+ac\right)=0\)
\(\Rightarrow ab+bc+ac=0\)
\(\Rightarrow\frac{\left(a+b+c\right)}{abc}=0\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)
\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(\frac{-1}{c}\right)^3\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}.\left(-\frac{1}{c}\right)=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{ab}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\Rightarrow ab+bc+ac=0\)
\(\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\left(\frac{1}{a}\right)^3+\left(\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)