\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)

\(\Rightarrow2\left(ab+bc+ac\right)=0\)

\(\Rightarrow ab+bc+ac=0\)

\(\Rightarrow\frac{\left(a+b+c\right)}{abc}=0\)

\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)

\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(\frac{-1}{c}\right)^3\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}.\left(-\frac{1}{c}\right)=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{ab}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)

14 tháng 11 2018

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\Rightarrow ab+bc+ac=0\)

\(\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\left(\frac{1}{a}\right)^3+\left(\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

8 tháng 5 2017

Câu 2 thế y = 1 - x rồi quy đồng như bình thường là ra bn nhé

22 tháng 10 2016

Câu 1:

  • Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

  • Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

22 tháng 10 2016

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

NV
27 tháng 9 2020

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Áp dụng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(A=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

14 tháng 11 2018

Ta có: a3+b3+c3=3abc <=> a3+b3+c3-3abc=0

<=>\(a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b\right)-3abc=0\)

<=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Mà a+b+c khác 0

=>\(a^2+b^2+c^2-ab-bc-ca=0\)

<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}}a=b=c}\)

=>\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

31 tháng 7 2019

https://olm.vn/hoi-dap/detail/48946023107.html              vào trang đó coi rồi

ta có a+b+c=0 => a+b=-c => a^2 +b^2 =c^2-2ab

tương tự a^2 + c^2 =b^2-2ac

               b^2 + c^2 =a^2-2bc

thế cào A= -1/2ab + -1/2ac + -1/2bc = -(c+a+b)/2abc=0 (vì a+b+c=0 )

31 tháng 7 2019

  ta có:a^3+b^3+c^3=3abc 
<=>(a+b)^3+c^3-3ab(a+b)-3abc=0 
<=>(a+b+c)[(a+b)^2+(a+b)c+c^2]-3ab(a+b... 
<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0 
<=>1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]... 
do a,b,c doi mot khac nhau nen PT<=>a+b+c=0(DPCM)

lộn nha không phải cái trang đó đâu cái này này 

1 tháng 1 2016

Có: (a+b+c)2=a2+b2+c2

=> a+b2 +c2 +2(a*b+b*c+c*a)=a2 +b2 +c2

=>2*(a*b+b*c+c*a) = 0

=>a*b+b*c+c*a = 0

=> (a*b+b*c+c*a)/a*b*c = 0 ( cùng chia 2 vế cho a*b*c)

=> (a*b/a*b*c)+(b*c/a*b*c)+(c*a/a*b*c) = 0

=>1/c+1/a+1/b = 0

=>1/a3 +1/b3 +1/c3 =3*1/a*1/b*1/c = 3/a*b*c

 

1 tháng 1 2016

đoạn cuối giải j k hỉu tí nào