Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Bolbbalgan4 - Toán lớp 8 - Học toán với OnlineMath
Xem chi tiết nhé ! : https://olm.vn/hoi-dap/question/1093066.html
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3< =>\left(a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\right)=9< =>\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\\
\\
\)
Ở đâu có 2 thì thay vào @@
Ta có:
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(a+b+c\right)+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\Rightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{3^2-5}{2}=2\)
Ở đâu có 2 thay bằng \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) là được
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\) (vì \(a+b+c\ne0\))
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\) (nhân cả hai về với hai)
<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> a - b = b - c = c - a = 0 (vì 3 cái đấy đều lớn hơn hoặc bằng 0)
<=> a = b = c
Nên : P = \(\left(2017+\frac{a}{b}\right)\left(2017+\frac{b}{c}\right)\left(2017+\frac{c}{a}\right)=\left(2017+\frac{a}{a}\right)\left(2017+\frac{a}{a}\right)+\left(2017+\frac{a}{a}\right)\)
\(=\left(2017+1\right)\left(2017+1\right)\left(2017+1\right)=2018.2018.2018=2018^3\)
Nè bạn :)
Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)
\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)
\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)
Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)
cái cuối phải là \(\left(b-c\right)a^3\) chứ