\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge2\). Cmr: abc ≤
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

Từ đề bài suy ra \(\frac{1}{a+1}\ge\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự với hai bđt kia rồi nhân theo vế suy ra

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

Do a, b, c>0 nên (a+1)(b+1)(c+1) > 0 suy ra:

\(1\ge8abc\Leftrightarrow abc\le\frac{1}{8}\left(đpcm\right)\)

Đẳng thức xảy ra khi a = b = c = 1/2

6 tháng 7 2016

Ta có 

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)

\(\Rightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

\(\Rightarrow\frac{1}{1+a}\ge\frac{1+b-1}{1+b}+\frac{1+c-1}{1+c}\)

\(\Rightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\le2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)( nhỏ hơn vậy do bất đẳng thức Cosy với 2 số)

tương tư ta chứng minh được

\(\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)

Nhân vế theo vế của 3 bất đẳng thức vừa chứng mình được 

\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}.2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}.2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}\)

\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc.\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}:\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc\)

\(\Rightarrow\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc\)

\(\Rightarrow1\ge8abc\Rightarrow\frac{1}{8}\ge abc\)

Ủng hộ cho mình 1 cái T I C K nha . Cảm ơn bạn rất nhiều

____________________________CHÚC BẠN HỌC TỐT NHA ________________________________

6 tháng 7 2016

Dấu "=" nữa Tùng ơi!

Cơ mà Linh k rùi, vất vả quá! :D

DD
22 tháng 1 2021

\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\).

Tương tự ta có: \(\frac{1}{b+1}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\)\(\frac{1}{c+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\).

Nhân 3 bất đẳng thức trên theo vế ta được: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Leftrightarrow abc\le\frac{1}{8}\).

26 tháng 1 2019

mik ví dụ 1 biểu thức nha

a(a+b+c)+bc/b+c=a^2+ab+ac+bc/b+c=(a+c)(a+b)/b+c

tương tự với mấy biểu thức còn lại

26 tháng 1 2019

cái bài này mik làm rồi mà giờ ko nhớ nữa

8 tháng 11 2018

2

8 tháng 2 2020

Em nghĩ đề là \(a,b,c>0\)

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2,w^3\right)\) và \(u^2=tv^2\)

gt \(\Leftrightarrow uw^3=v^2\). Chú ý \(w^3\le uv^2\Leftrightarrow\frac{v^2}{u}\le v^2\Leftrightarrow u\ge1\)

Cần chứng minh: \(15u\ge7+8w^3\Leftrightarrow15u^2\ge7u+8v^2\)

\(\Leftrightarrow8\left(u^2-v^2\right)+7u\left(u-1\right)\ge0\) (hiển nhiên đúng)

19 tháng 12 2017

Sửa lại đề nha: abc = 1

\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le1\)

\(\Leftrightarrow\left(a+b+1\right)\left(b+c+1\right)+\left(b+c+1\right)\left(c+a+1\right)\)\(+\left(c+a+1\right)\left(a+b+1\right)\)

    \(\le\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)+a+b+b+c+1\)\(+\left(b+c\right)\left(c+a\right)+b+c+c+a+1\)
      \(+\left(c+a\right)\left(a+b\right)+c+a+a+b+1\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)\)  \(+\left(c+a\right)\left(a+b\right)+a+b+b+c+c+a+1\)

\(\Leftrightarrow2+2\left(a+b+c\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

 \(\Leftrightarrow2+2\left(a+b+c\right)\le\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\Leftrightarrow3\le\left(a+b+c\right)\left(ab+bc+ca-2\right)\)
Áp dụng bất đẳng thức Cauchy cho 3 số không âm:\(\left(a+b+c\right)\left(ab+bc+ca-2\right)\ge3.\sqrt[3]{a.b.c}.\left[3.\sqrt[3]{ab.bc.ca}-2\right]=3\)

\(\Rightarrow\)đpcm
Dấu đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)

6 tháng 9 2019

Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc

Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)

Ta có \(LHS=a^3.a+b^3.b+c^3.c\) 

\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)

\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)

\(=a^3+b^3+c^3=RHS\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 9 2019

Bài 2:

\(BĐT\Leftrightarrow\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Đến đây bớt 3/2 ở mỗi vế rồi dùng sos xem sao? Giờ phải ăn cơm đi học rồi, chiều về làm, ko được sẽ nghĩ cách khác.