K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

bn chỉ cần đổi vế r áp dụng hằng đẳng thức mở rộng a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)

sau đó ra điều phải CM

28 tháng 6 2017

Có : a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

Áp dụng hằng đẳng thức phụ , ta có :

a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - ac - bc)

<=> 0.(a2 + b2 + c2 - ab - bc - ac) = 0  (đúng)

Vậy .....

21 tháng 7 2016

ta có 

\(\left(a+b+c\right)^3=0\)(vì a++c=0)

\(< =>a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)(1)

vì a+b+c= 0 > a+b = -c; a+c = -b ; b+c = -a thay vào (1) ta được

\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(< =>a^3+b^3+c^3+3\left(-c\right)\left(-a\right)\left(-b\right)=0\)

\(< =>a^3+b^3+c^3-3abc=0\)

\(< =>a^3+b^3+c^3=3abc\)

15 tháng 8 2018

1 ) Ta có :

\(a+b-c=0\Leftrightarrow a+b=c\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Rightarrow a^3+b^3-c^3=a^3+b^3-\left(a+b\right)^3\)

\(\Rightarrow a^3+b^3-c^3=a^3+b^3-3a^2b-3b^2a-b^3\)

\(\Rightarrow a^3+b^3-c^3=-3a^2b-3b^2a\)

\(\Rightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3-c^3=-3abc\left(đpcm\right)\)

2 ) Ta có :

\(a-b+c=0\Leftrightarrow c=b-a\Leftrightarrow c^3=\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+b^3-3a^2b+3b^2a-a^3\)

\(\Rightarrow a^3-b^3+c^3=-3a^2b+3b^2a\)

\(\Rightarrow a^3-b^3+c^3=-3ab\left(a-b\right)\)

\(\Rightarrow a^3-b^3+c^3=3ab\left(b-a\right)\)

\(\Rightarrow a^3-b^3+c^3=3abc\left(đpcm\right)\)

15 tháng 8 2018

1 ) Bổ sung dấu \(\Rightarrow\) thứ 2 :

\(\Rightarrow...=a^3+b^3-a^3-3a^2b-3b^2a-b^3\)

22 tháng 10 2018

a/ \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow\left[\left(a+b\right)+c\right]^3=0\)

\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3bc^2+3b^2c+3a^2c+3ac^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)+\left(3ac^2+3a^2c+3abc\right)-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)

\(a+b+c=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

22 tháng 10 2018

còn câu b thì sao bn, giúp nhanh nhanh mk vs

15 tháng 12 2016

1) Có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3-3abc=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

2)Có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)

\(\Leftrightarrow a^3+b^3+3abc=c^3\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

 

10 tháng 8 2018

Hỏi đáp Toán

20 tháng 9 2015

Thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có : 

a^3+b^3+c^3-3abc=0 

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0 

<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0 

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0 

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)... 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0 

luôn đúng do a+b+c=0

 

29 tháng 3 2018

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

29 tháng 3 2018

bạn thử tra mạng đi

16 tháng 11 2016

vì a+b+c=0 nên c= -(a+b)

ta có :

a3 + b3 + c3

= a3 + b3 - (a + b)3

= a3 + b3 - (a3 + 3a2b + 3ab2 + b3)

=a3+ b3 - a3 - 3a2b - 3ab2 - b3

= -3a2b - 3ab2

= -3ab(a+b)

= -3ab.(-c)

=3abc (đpcm)