Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)vuông tại A
\(BH=\sqrt{AB^2-AH^2}=\sqrt{7,5^2-6^2}=4,5\)
có : \(AH^2=HB.HC\)
\(\Rightarrow HC=\dfrac{AH^2}{HB}=8\)
\(BC=HB+HC=12,5\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{\left(12,5\right)^2-\left(7,5\right)^2}=10\)
\(cosB=\dfrac{12,5}{10}=1,25\)
\(cotC=\dfrac{10}{7,5}=1,33\)
\(tanB=\dfrac{10}{7,5}=1,33\)
Bài 2:
Ta có : \(AC=tan\alpha.AB=\dfrac{5}{12}.6=2,5\)
\(BC=\sqrt{AB^2+AC^2}=6,5\)
( Có thể làm cách khác nữa nha, không nhất thiết dùng Pytago / \ )
a, theo đề ta có : \(\frac{AC}{AB}\) = \(\frac{5}{12}\)
=> AC= 6.5:12=2,5
b, ta có: BC= \(\sqrt{AC^2+AB^2}\) = \(\frac{13}{2}\)
Tam giác ABC vuông tại A => tan B = tan a => \(\frac{AC}{AB}=\frac{5}{12}\)
Mà AB= 6cm => AB= (AC.12)/5= (6.5)/12 = 2,5 cm
Áp dụng định lý py ta go ta có : BC^2 = AB^2 + AC^2 = 6^2 + 2,5 ^2 = \(\frac{169}{4}\) => BC=\(\sqrt{\frac{169}{4}}\)= \(\frac{13}{2}\)= 6,5 cm
A B C
a) Vì \(\widehat{B}=\alpha\); \(\tan\alpha=\frac{5}{12}\)
\(\Rightarrow\frac{AC}{AB}=\frac{5}{12}\)
mà \(AB=8\)\(\Rightarrow\frac{AC}{8}=\frac{5}{12}\)
\(\Rightarrow AC=\frac{8.5}{12}=\frac{10}{3}\)
Vậy \(AC=\frac{10}{3}\)
b) Vì \(\Delta ABC\)vuông tại A nên áp dung định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+\left(\frac{10}{3}\right)^2=BC^2\)
\(\Rightarrow BC^2=\frac{676}{9}\)\(\Rightarrow BC=\frac{26}{3}\)
Vậy \(BC=\frac{26}{3}\)
Tự vẽ hình
tanB = \(\dfrac{AC}{AB}\)
\(\Leftrightarrow\) \(\dfrac{5}{12} = \dfrac{AC}{6}\)
\(\Leftrightarrow\) AC = \(\dfrac{5.6}{12} = 2,5(cm)\)
Áp dụng định lý Py-ta-go vào \(\bigtriangleup{ABC}\) vuông tại A , có
\(BC^2= AB^2 + AC^2\)
\(\Leftrightarrow\) \(BC^2=6^2+2,5^2\)
\(\Leftrightarrow\) \(BC^2 = 36 + \dfrac{25}{4}\)
\(\Leftrightarrow\) \(BC^2 = \dfrac{169}{4}\)
\(\Rightarrow\) \(BC = \dfrac{13}{2} (cm)\)
\(AC=ABtanB=6\cdot\dfrac{5}{12}=2,5\left(cm\right)\)
\(BC^2=AB^2+AC^2\left(Pythagoras\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+2,5^2}=6,5\left(cm\right)\)