K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

A B C H D E / / = = Q F

Gọi giao điểm EH và AC là Q, giao 6diểm của AB và HD là F.

a) Ta sẽ chứng minh ^CAE + ^BAD = 90o. Thật vậy, dễ có DH // AC => DH// QC =>^CQH = ^QHD (so le trong) (1) . Mặt khác E đối xứng với H qua AC nên AC là đường trung trực EH hay QC là đường trung EH nên ^CQH = 90o (2).

Từ (1) và (2) có ^QHD = 90o hay ^EHD = 90o. Suy ra ^HED + ^HDE = 90o (3)

Mặt khác, \(\Delta\)QAE vuông tại Q nên ^QAE + ^QEA = 90o => ^CAE + ^HEA = 90o.

Hay ^CAE + ^HED = 90o (4)

Tương tự ta cũng chứng minh được ^BAD + ^HDE = 90o (5) (tự làm đi, mình lười quá)

Cộng theo vế (3), (4) và (5) ta được ^HED + ^HDE + ^CAE + ^HED + ^BAD + ^HDE = 270o

Hay 2( ^HED + ^HDE) + ^CAE + ^BAD = 270o

Từ đây suy ra ^CAE + ^BAD = 90o . Kết hợp tam giác ABC vuông tại A suy ra

^CAE + ^BAD + ^BAC = 90o và A, D, E thẳng hàng.

Tí làm tiếp, câu a sai thì thôi, mỏi nhừ tay cả rồi:((

2 tháng 8 2019

Chứng minh tiếp chỗ câu a):

Chứng minh A là trung điểm ED:

Dễ chứng minh \(\Delta\)AHF = \(\Delta\)AFD (hai cạnh góc vuông)

=> AH = AD. Tương tự chứng minh được \(\Delta\)HAQ = \(\Delta\)EAQ => AH = EA

Từ đó suy ra AD = EA. MÀ A, D, E thẳng hàng nên A là trung điểm ED

19 tháng 8 2017

c) chứng minh tứ giác BDEC là hình thang vuông nhé

a: Vì H và D đối xứng nhau qua AB

nên AH=AD; BH=BD

Xét ΔAHB và ΔADB có

AH=AD

HB=DB

AB chung

Do đó ΔAHB=ΔADB

Suy ra: góc ADB=90 độ và góc HAB=góc DAB

hay BD vuông góc với AD và AB là phân giác của góc HAD(1)

b: Ta có: H và E đối xứng nhau qua AC
nên AH=AE; CH=CE

=>ΔAHC=ΔAEC

=>góc AEC=90 độ và góc HAC=góc EAC

=>AC là phân giác của góc HAE(2)

Ta có: CH+BH=BC

=>BD+CE=BC

c: Từ (1) và (2) suy ra góc DAE=2x90=180 độ

=>D,A,E thẳng hàng

12 tháng 12 2015

 a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o 
do đó góc DAB+góc BAH+góc HAC+góc CAE=180o 
=> D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=> tam giác DHE vuông tại H. 


c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o
tương tự ta có : góc AEC=90o 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BAEC là hình thang vuông. 

12 tháng 12 2015

 a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o 
Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o
=> D, A, E thẳng hàng (4) 
Từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=>  tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o 
tương tự ta có góc AEC=90o 
=> BD//CE (cùng vuông góc với DE) 
nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BDEC là hình thang vuông. 

30 tháng 5 2017

A H B C D E 1 2

a) AB là đường trung trực của HD \(\Rightarrow\) AD = AH.

AC là đường trung trực của HE \(\Rightarrow\) AE = AH.

Suy ra AD = AE. (1)

Tam giác AHD cân nên \(\widehat{HAD}=2\widehat{A_1}.\)

Tam giác AHE cân nên \(\widehat{HAE}=2\widehat{A_2}.\)

Suy ra \(\widehat{HAD}+\widehat{HAE}=2\widehat{A_1}+2\widehat{A_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)\)

\(\widehat{HAD}+\widehat{HAE}=2.90^o=180^o.\)

Do đó D, A, E thẳng hàng. (2)

Từ (1) và (2) suy ra A là trung điểm của DE. Vậy D đối xứng với E qua A.

b) Tam giác DHE có HA là đường trung tuyến và HA = \(\dfrac{1}{2}\) DE nên \(\Delta DHE\) vuông tại H.

c) Hãy chứng minh \(\widehat{ADB}=\widehat{AHB}=90^o,\widehat{AEC}=90^o\) để suy ra BDEC là hình thang vuông

d) Hãy chứng minh BD = BH, CE = CH.

18 tháng 11 2017

bạn giải cụ thể giúp mình câu c với b dc ko bn?