Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a:
BC=20cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/12=CD/16
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
b: Xét ΔABC có DE//AB
nên DE/AB=CD/BC
=>DE/12=4/7
hay DE=48/7(cm)
A B C 9 12 D E
a, Xét tam giác ABC và tam giác EDC ta có :
^C _ chung
\(\frac{BC}{DC}=\frac{AC}{EC}\)
^BAE = ^CED = 90^0
=> tam giác ABC ~ tam giác CED ( g.c.g )
HAB ? ^H ở đâu bạn ?
b, Vì AD là tia phân giác tam giác ABC ta có :
\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)
hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé
c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét :
\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính
d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
a: XétΔABC có AD là phân giác
nên DB/CD=AB/AC=3/4(1)
b: Xét ΔCAB có ED//AB
nên ED/EC=AB/AC(2)
từ (1) và (2) suy ra BD/CD=ED/EC
hay \(BD\cdot EC=ED\cdot CD\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)
=>\(AC=\sqrt{25}=5\left(cm\right)\)
b: XétΔBAC có BD là phân giác
nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)
D nằm giữa A và C
=>AD+DC=AC
=>AD+DC=5(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)
=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)
c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
=>DA=DH
mà DA=2,4(cm)
nên DH=2,4(cm)
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=15/7
=>BD=45/7cm; CD=60/7cm
Xét ΔCAB có DE//AB
nên DE/AB=CD/CB
=>DE/9=60/7:15=4/7
=>DE=36/7cm
b: \(S_{ACD}=\dfrac{1}{2}\cdot DE\cdot AC=\dfrac{1}{2}\cdot\dfrac{36}{7}\cdot12=\dfrac{216}{7}\left(cm^2\right)\)
\(S_{ACB}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)
\(S_{ABD}=54-\dfrac{216}{7}=\dfrac{162}{7}\left(cm^2\right)\)