Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
a) Xét tam giác AHB và AHC có:
AC = BC (gt)
\(\widehat{AHB}=\widehat{AHC}\) (AH vuông góc BC)
=> AHB = AHC (ch-gv)
=> HB = HC (cạnh tương ứng)
\(\widehat{BAH}=\widehat{CAH}\) (góc tương ứng)
b) Ta có HB = HC (cmt)
Mặt khác AH là cạnh góc vuông của tam giác vuông AHC
Áp dụng định lý Pitago ta có:
\(AC^2=AH^2+HC^2\\ =>10^2=AH^2+6^2\\ =>100=AH^2+36\)
\(=>AH^2=100-36=64\\ =>AH=\sqrt{64}=8\)
xét tam giác AHB vuông tại H (Gt)
=> AH HC ^2 + BH^2 = AB^2
AH = 12; AB = 13 (gt)
=> 12^2 + BH^2 = 13^2
=> BH = 5 do BH > 0
có BH + HC = BC
HC = 16 (gt)
=> BC = 21
dùng pytago tính ra AC = 40
*Tính AC
Áp dụng định lí pytago vào ΔAHC vuông tại H, ta được
\(AC^2=AH^2+CH^2\)
hay \(AC^2=12^2+16^2=400\)
⇒\(AC=\sqrt{400}=20cm\)
*Tính HB
Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
hay \(HB^2=AB^2-AH^2=13^2-12^2=25\)
⇒\(HB=\sqrt{25}=5cm\)
*Tính BC
Ta có: HB+HC=BC(H nằm giữa B và C)
hay 5+16=BC
⇔BC=21cm
Vậy: AC=20cm; HB=5cm; BC=21cm
Áp dụng định lí Py-ta-go vào \(\Delta ABH\) vuông tại H có: \(AH^2+BH^2=AB^2\Leftrightarrow12^2+BH^2=13^2\Rightarrow BH=5cm\)
\(\Rightarrow BC=BH+HC=5+16=21cm\)
Áp dụng định lí Py-ta-go vào \(\Delta ACH\) vuông tại H có:
\(AH^2+CH^2=AC^2\Leftrightarrow12^2+16^2=AC^2\Rightarrow AC=20cm\)
Áp dụng định lí Pi-ta-go trong ΔAHC vuông tại H ta có:
AC2 = AH2 + HC2 = 122 + 162 = 144 + 256 = 400
⇒ AC = 20 (cm)
Áp dụng định lí Pi-ta-go trong ΔAHB vuông tại H ta có:
BH2 + AH2 = AB2 ⇒ BH2 = AB2 - AH2 = 132 - 122 = 169 -144 = 25
⇒ BH = 5cm
Do đó BC = BH + HC = 5 + 16 = 21 (cm)
\(AB^2=AH^2+HB^2=12^2+5^2=13^2\)
\(AC^2=AH^2+HC^2=16^2+5^2=17^2\)
bạn thiếu xét tam giác kìa