Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC
b.áp dụng định lý pitago ta có:
\(AB^2=AH^2+HB^2\)
\(5^2=AH^2+\left(8:2\right)^2\)
\(AH=\sqrt{5^2-4^2}=3cm\)
c.Xét tam giác vuông BHD và tam giác vuông CHE, có:
BH = CH ( cmt )
góc B = góc C ( ABC cân )
Vậy tam giác vuông BHD = tam giác vuông CHE
=> HD = HE
=> HDE cân tại H
d.ta có AB = AD + DB
AC = AE + EC
Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )
=> AD = AE
=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )
Chúc bạn học tốt !!!!
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:
AH: chung
AB=AC (gt)
=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)
=>HB=HC (2 cạnh tương ứng)
b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)
Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)
52 = AH2 + 42
AH2 = 52 - 42 = 25-16=9
AH=\(\sqrt{9}=3\)
c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)
Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:
AH: chung
góc BAH=góc CAH (cmt)
=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)
=>HD=HE (2 cạnh tương ứng)
=>tam giác DHE cân tại H
d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE
Mà HE=HD (cmt) => HC>HD
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(Hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(Hai góc tương ứng)
a, xét tam giác AHB và tam giác AHC có : AH chung
AB = AC do tam giác ABC cân tại A (gt)
^AHB = ^AHC = 90
=> tam giác AHB = tam giác AHC (ch-cgv)
=> HB = HC (Đn)
b, HB = HC (câu a)
HB + HC = BC
BC = 8 cm (gt)
=> HB = 4
Xét tam giác AHB vuông tại H => AH^2 + HB^2 = AB^2 (Pytago)
AB = 5cm (gt)
=> AH^2 = 5^2 - 4^2
=> AH = 3 do AH > 0
c, xét tam giác BHD và tam giác CHE có : HB = HC (câu a)
^BDH = ^CEH = 90
^ABC = ^ACB do tam giác ABC cân tại A (gt)
=> tam giác BHD = tam giác CHE (ch-gn)
=> HD = HE (đn)
=> tam giác HDE cân tại H (đn)
b, tam giác BHD vuông tại D
=> DH < HB
HB = HC (câu a)
=> HD < HC