K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:

                                     AH: chung

                                     AB=AC (gt)

=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)

  =>HB=HC (2 cạnh tương ứng)

b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)

Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)

                                                  52    = AH2 + 42

                                                                  AH2 = 52 - 42 = 25-16=9

                                                 AH=\(\sqrt{9}=3\)

c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)

Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:

                                        AH: chung

                                        góc BAH=góc CAH (cmt)

=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)

  =>HD=HE (2 cạnh tương ứng)

  =>tam giác DHE cân tại H

d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE

Mà HE=HD (cmt) => HC>HD

9 tháng 5 2021

a) Chứng minh HB=HC:                                                                              Xét ΔAHB và ΔAHC có:                                                                         ∠AHB=∠AHC=90(độ)                                                                                   AH cạnh chung                                                                                             AB=AC(gt)                                                                                                     ⇒ ΔAHB = ΔAHC (ch-cgv)  ⇒ HB=HC (2 cạnh tương ứng)

b) Ta có: HB=HC=BC/2=6/2=3(cm)                                                              Ta có: ΔAHB vuông tại H.                                                                              ⇒ AH(mũ 2)+BH(mũ 2)=AB(mũ 2) ⇒ AH(mũ 2)=AB(mũ 2)-BH(mũ 2)          =4(mũ 2)-3(mũ 2)=16-9=7 ⇒ AH=√7(cm) 

c)                                                                                                                  Ta có: ΔAHB = ΔAHC ⇒ ∠BAH=∠CAH                                                      Xét ΔAHD và ΔAHE có:                                                                              ∠D=∠E=90(độ)                                                                                          AH cạnh chung                                                                                             ∠BAH=∠CAH (gt)                                                                                        ⇒ ΔAHD = ΔAHE (ch-gn) ⇒ DH=EH ⇒ ΔHDE cân tại H. A B C H D E

                                                                                                  

10 tháng 5 2021

Cảm ơn bạn

 

17 tháng 3 2020

Xét tam giác ABH và tam giác ACH

                    AB=AC(GT)

                    ^AHB=^AHC=90o

                    ^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)

=>  tam giác ABH = tam giác ACH

=> HB=HC ( 2c tứ)

có HB+HC=BC 

mà BC=8 cm

HB=HC

=> HB=HC=4cm

Xét tam giác ABH : ^H=90o

=> AB2+AH2+BH2(đ/lý pythagoras)

thay số ta có :

52=AH2+42

25-16=AH2

9=AH2

3=AH

c)Xét tam giác BDH và tam giác ECH

^BDH= ^ HEC =90o

BH=CH

^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)

=> tam giác BDH = tam giác ECH

=> DH=EH

=> HDE CÂN TẠI H (Đ/N)

d) qua tia đối của DH ; kẻ HK sao cho HK= DH

CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền)  => HK > HC

mà HD=HK 

=> HD>HC

13 tháng 3 2020

A B C H D E

a, xét tam giác AHB và tam giác AHC có : AH chung

AB = AC do tam giác ABC cân tại A (gt)

^AHB = ^AHC = 90 

=> tam giác AHB = tam giác AHC (ch-cgv)

=> HB = HC (Đn)

b, HB = HC (câu a)

HB + HC = BC 

BC = 8 cm (gt)

=> HB = 4

Xét tam giác AHB vuông tại H => AH^2 + HB^2 = AB^2 (Pytago)

AB = 5cm (gt)

=> AH^2 = 5^2 - 4^2

=> AH = 3 do AH > 0 

c, xét tam giác BHD và tam giác CHE có : HB = HC (câu a)

^BDH = ^CEH = 90

^ABC = ^ACB do tam giác ABC cân tại A (gt)

=> tam giác BHD = tam giác CHE (ch-gn)

=> HD = HE (đn)

=> tam giác HDE cân tại H (đn)

b, tam giác BHD vuông tại D

=> DH < HB 

HB = HC (câu a)

=> HD < HC

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

b: BH=CH=BC/2=4(cm)

nên AH=3(cm)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

hay ΔHDE cân tại H

25 tháng 12 2022

bạn ơi, cho mình xem hình vẽ với

 

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểmcủa BC

hay HB=HC

b: Xét ΔADH vuông tạiD và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra HD=HE

hay ΔHDE cân tại H

TC
Thầy Cao Đô
Giáo viên VIP
27 tháng 12 2022

loading...

a) Xét hai tam giác vuông $AHB$ và $AHC$ có:

$AH$ là cạnh chung;

$AB = AC$ (gt);

Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)

Suy ra $HB = HC$ (Hai cạnh tương ứng)

$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).

b) Xét hai tam giác vuông $ADH$ và $AEH$ có:

$AH$ là cạnh chung;

$\widehat{BAH} = \widehat{CAH}$ (cmt);

Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).

Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.

15 tháng 5 2016

a) Tam giác AHB = tam giác AHC  => HB=HC

b) AH vừa là đường cao vừa là trung tuyến => HB=HC=4(cm)

Theo định lí Pytago trong tam giác AHB vuông yaij H, tính được AH=3cm

c; d) Tam giác BDH = tam giác CEH

=> HD=HE

Xét tam giác vuông HEC có cạnh HC đối diện góc 90 độ

=> HC>HE mà HE=HD

=> HC>HD

trả l cho nhi câu nhi vùa đăng môn sinh

3 tháng 9 2019

 chiều nay k hk ak 

ở trên đây chỉ giải toán; văn ; anh thôi 

từ xem đx giải đc thì giải k đc thì thôi