Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co
(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))<=10
<=>\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)(1)\(\le7\)
That vay ta co
Do a,b,c co vai tro nhu nhau nen ta gia su a>=b>=c
=>(a-b)(b-c)>=0
=> ab+bc>=b2+ac
Do a,b,c khac 0
=>\(\hept{\begin{cases}1+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}\\1+\frac{a}{c}\ge\frac{b}{c}+\frac{a}{b}\end{cases}}\)
=> 2+2(\(\frac{c}{a}+\frac{a}{c}\))>=(1)
Do a,b,c thuoc [1;2]
=> a/c<=2; c/a<=1/2
=>\(\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)
=>\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\le7\)
=> (a+b+c)(1/a+1/b+1/c)<=10
Ta có (a+b+c)(1/a+1/b+1/c)=3+a/b + a/c + b/a + b/c + c/a + c/b ≤ 10
<=> a/b+b/a+b/c+c/a+c/b ≤ 7
Giả sử 1 ≤ c ≤ b ≤ a ≤ 2 thì:
(1 - a/b)(1 - b/c) + (1 - b/a)(1 - c/b) ≥ 0
<=> 2 + a/c + c/a ≥ a/b + b/a + b/c + c/b
<=> 2+2(a/c+c/a) ≥ a/b + a/c + b/a + b/c + c/a + c/b
Do 1≤ a,c ≤2
=> 1/2≤ a/c ≤ 2
=> (a/c-2)(a/c-1/2) ≤ 0
=> a/c+c/a ≤ 5/2
Mà 2+2(a/c+c/a) ≥ a/b + a/c + b/a + b/c + c/a + c/b
=> 7 ≥ a/b + a/c + b/a + b/c + c/a + c/b
=> (a+b+c)(1/a+1/b+1/c) ≤ 10
Câu hỏi của Nguyễn Thiều Công Thành - Toán lớp 9 - Học toán với OnlineMath
Ta có :\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\)
\(=\frac{ab-1}{b}.\frac{bc-1}{c}.\frac{ac-1}{a}\)
Ta lại có : \(\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)
\(=\frac{a^2-1}{a}.\frac{b^2-1}{b}.\frac{c^2-1}{c}\)
\(\frac{a^3}{b\left(b+c\right)}+\frac{b}{2}+\frac{b+c}{4}\ge3\sqrt[3]{\frac{a^3}{b\left(b+c\right)}.\frac{b}{2}.\frac{b+c}{4}}=\frac{3}{2}a\)
\(\Leftrightarrow\)\(\frac{a^3}{b\left(b+c\right)}\ge\frac{3}{2}a-\frac{1}{2}b-\frac{1}{4}\left(b+c\right)=\frac{3}{2}a-\frac{3}{4}b-\frac{1}{4}c\)
Tương tự, ta có: \(\frac{b^3}{c\left(c+a\right)}\ge\frac{3}{2}b-\frac{3}{4}c-\frac{1}{4}a;\frac{c^3}{a\left(a+b\right)}\ge\frac{3}{2}c-\frac{3}{4}a-\frac{1}{4}b\)
Cộng theo vế 3 bđt ta được đpcm