Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
thế này đúng ko
a) Chứng minh : 𝛥ABM = 𝛥CDM
Xét 𝛥ABM và 𝛥CDM :
MA = MC (gt)
MB = MD (gt)
(đối đinh)
=> 𝛥ABM = 𝛥CDM (c – g – c)
b) Chứng minh : AB // CD
Ta có :
(góc tương ứng của 𝛥ABM = 𝛥CDM)
Mà : ở vị trí so le trong
Nên : AB // CD
c) Chứng minh BK = DH
Xét 𝛥ABH và 𝛥CDK, ta có :
(cmt)
AB = CD (𝛥ABM = 𝛥CDM)
=> 𝛥ABH = 𝛥CDK (cạnh huyền – góc nhọn)
=> BH = CK (cạnh tương ứng)
Lời giải:
a,Vì M là trung điểm AC nên MA=MC
MB=MD (gt)=>M là trung điểm của BD
Góc AMB=góc DMC (đối đỉnh)
=> tam giác ABM=tam giác CDM(c.g.c) (1)
b,vì tam giác ABC nhọn(gt)
=>góc B ,góc C nhọn
M là trung điểm của AC và BD
=>M là giao điểm 2 đường thẳng AC và BD
Từ. (1) => góc ABM=góc CDM (so le)
Góc MCD= góc BAM (so le)
Cạnh AB=CD
=>Tứ giác ABCD là hình bình hành
=>AB//CD
c,vì H và K là 2 điểm thuộc BD
mà BH =DK (gt)
Từ A kẻ AH_|_ BD; từ C kẻ CK_|_BD
=> AH=CK( vì tam giác ABD=tam giác BCD co BD là cạnh chung)
=>AH//CK
=>góc AKH=góc CHK(2 góc ở vị trí so le)
=> tam giác AHK=tam giác CKH(c.g.c)
=>AK=CH
B C A M N H K O
a) Tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét tam giác ABM và tam giác ACN có:
AB = AC
MB = NC
\(\widehat{ABM}=\widehat{ACN}\)
\(\Rightarrow\Delta ABM=\Delta ACN\left(c-g-c\right)\)
b) Do \(\Delta ABM=\Delta ACN\Rightarrow\widehat{BAH}=\widehat{CAK}\) (Hai góc tương ứng)
Xét tam giác vuông AHB và AKC có:
AB = AC (gt)
\(\widehat{BAH}=\widehat{CAK}\)
\(\Rightarrow\Delta AHB=\Delta AKC\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK\)
c) Ta có \(\Delta AHB=\Delta AKC\Rightarrow HB=KC\)
Xét tam giác vuông AHO và AKO có:
AH = AK
AO chung
\(\Rightarrow\Delta AHO=\Delta AKO\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HO=KO\)
Mà HB = CK nên OB = OH - HB = OK - CK = OC
Vậy nên tam giác OBC cân tại O.
a/ Xét tg ABM và tg ACM có
AB = AC ( gt)
BM = CM ( gt)
AM chung
=> tg ABM = tg ACM (ccc)
b/ ( Trên tia đối của tia MA chứ ko phải AM nha )
Xét tg AMC và tg DMB, có
MC = MB (gt)
AM = MD ( gt)
^AMC = ^BMD ( đđ )
=> tg AMC = tg DMB ( cgc)
=> AC = BD
c/ tg ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AD vuông góc BC (1)
Lại có AM = MD , BM = MC ( gt) (2)
Từ (1), (2) => ABCD là hình thoi
=> AB // CD
d/ Theo đề : AI // BC , AI = BC
=> ABCI là hình bình hành
=> AB // CI
Mà AB // BC ( cmt )
=> I , C ,D thẳng hàng
a) Xét tam giác ABM và tam giác ACM, ta có:
AB=AC(gt)
BM=CM(gt)
AM: cạnh chung
Do đó: tam giác ABM = tam giác ACM(c.c.c)
Vậy: Góc AMB = Góc AMC
Mà góc AMB + góc AMC = 180 độ =>
Góc AMB = Góc ACM = 180 độ / 2 = 90 độ
Vậy AM vuông góc với BC
b) Xét tam giác AMD và tam giác AME, ta có:
AD=AE (gt)
Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )
AM: cạnh chung
Do đó: Tam giác AMD = tam giác AME (c.g.c)
c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )
Vậy ba điểm D,E,K thẳng hàng
=> tam giác ABC cân tại A
Xét ABM và ACM có:
AM chung
AB = AC
A1 = A2 (tam giác ABC cân tại A)
Vậy tam giác ABM = ACM
M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)
=> M1 = M2 = 90
=> AM vuông góc BC